
Problema J193. Let ABCD be a square of center O. The parallel through
O to AD intersects AB and CD at M and N and a parallel to AB intersects
diagonal AC at P . Prove that
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Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Let H be the intersection point of MN and the parallel to AB through P .
By setting AB = 2a and NH = x, we have OH = a − x, MH = 2a − x (see
figure).
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Since PH = OH = a− x the Pythagora’s theorem yields

NP 2 = x2 + (a− x)2, MP 2 = (2a− x)2 + (a− x)2 (1)

Now, by using (1) and the Apollonius’ theorem we have
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[

2x2 + 2(a− x)2 + 2(2a− x)2 + 2(a− x)2 − 4a2
]

=

= 2x2
− 4ax+ 2a2 = 2(a− x)2

Therefore
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= 0

and we are done. �
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