Problema J193. Let ABCD be a square of center O. The parallel through O to AD intersects AB and CD at M and N and a parallel to AB intersects diagonal AC at P. Prove that

$$OP^4 + \left(\frac{MN}{2}\right)^4 = MP^2 \cdot NP^2$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Let H be the intersection point of MN and the parallel to AB through P. By setting AB = 2a and NH = x, we have OH = a - x, MH = 2a - x (see figure).

Since PH = OH = a - x the Pythagora's theorem yields

$$NP^2 = x^2 + (a-x)^2, \qquad MP^2 = (2a-x)^2 + (a-x)^2$$
 (1)

Now, by using (1) and the Apollonius' theorem we have

$$OP^{2} = \frac{1}{4} (2NP^{2} + 2MP^{2} - MN^{2}) =$$

$$= \frac{1}{4} [2x^{2} + 2(a - x)^{2} + 2(2a - x)^{2} + 2(a - x)^{2} - 4a^{2}] =$$

$$= 2x^{2} - 4ax + 2a^{2} = 2(a - x)^{2}$$

Therefore

$$OP^{4} + \left(\frac{MN}{2}\right)^{4} - MP^{2} \cdot NP^{2} =$$

$$= 4(a-x)^{4} + a^{4} - \left[(2a-x)^{2} + (a-x)^{2}\right] \left[x^{2} + (a-x)^{2}\right] = 0$$

and we are done. \Box