Problema J194. Let a, b, c be the side-lenghts of a triangle with the largest side c. Prove that

$$
\frac{a b(2 c+a+b)}{(a+c)(b+c)} \leq \frac{a+b+c}{3}
$$

Proposed by Arkady Alt, San Jose, California, USA
Solution by Ercole Suppa, Teramo, Italy
The inequality is equivalent to

$$
(a+b+c)(a+c)(b+c)-3 a b(2 c+a+b) \geq 0
$$

Now, bearing in mind that $c \geq a, c \geq b$ and $c \geq \frac{a+b}{2}$, we get

$$
\begin{aligned}
\text { LHS } & =(a+b+c)(a+c)(b+c)-3 a b(2 c+a+b) \\
& =(a+b+c)\left(a b+a c+b c+c^{2}\right)-3 a b(a+b+c)-3 a b c \\
& \geq(a+b+c)\left(3 a b+c^{2}\right)-3 a b(a+b+c)-3 a b c \\
& =(a+b+c) c^{2}-3 a b c \\
& =c[(a+b+c) c-3 a b] \\
& \geq c\left[\left(a+b+\frac{a+b}{2}\right) \frac{a+b}{2}-3 a b\right] \\
& =c\left[\frac{3}{4}(a+b)^{2}-3 a b\right] \\
& =\frac{3}{4} c(a-b)^{2} \geq 0
\end{aligned}
$$

and the proof is complete.

