Problema J195. Find all primes p and q such that both $p q-555 p$ and $p q+555 q$ are perfect squares.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Since $p q-555 p=p(q-555)$ is a perfect square, p divides $q-555$ and $q>555$. Therefore there exists an integer $a \geq 1$ such that

$$
\begin{equation*}
q-555=a p \tag{1}
\end{equation*}
$$

Likewise q divides $p+555$, so there exists an integer $b \geq 1$ such that

$$
\begin{equation*}
p+555=b q \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that

$$
\begin{aligned}
& p+555=b(555+a p) \quad \Rightarrow \\
& (1-a b) p=555(b-1) \geq 0 \quad \Rightarrow \\
& 1-a b \geq 0 \quad \Rightarrow \quad a=1, b=1
\end{aligned}
$$

Therefore $q-p=555$, so $p=2$ (otherwise $q-p$ would be an even number) and $q=557$.

