Problema J196. Let I be the incenter of triangle ABC and let A’, B/, C’
be the feet of altitudes from vertices A, B, C. If A’ = IB' = IC’, then prove
that triangle ABC' is equilateral.

Proposed by Dorin Andrica and Liana Topan, Babes-Bolyai University,
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Solution by Ercole Suppa, Teramo, Italy

Let a= BC,b=CA,c=AB,s=(a+b+c)/2 and let A”, B"”, C" be the
feet of the perpendiculars from I to BC, C A, AB respectively.
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We have A’A” = |BA” — BA'| so, by using the known formulas BA' =
ccos B, BA” = s — b (assuming wlog a > b > ¢) we have
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Likewise we obtain
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(observe that if A > 90° then AB’ = ccos(180° — A) = —ccos A and B'B” =
B'A+ AB" = —ccos A+ s — a).

Since TA" = IB’ the triangles ATA’A” and AIB’'B” are congruent, so
A’A” = B’B”. Hence from (1) and (2) it follows that
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Therefore (a — b)cosC' = 0, and analogously we obtain (¢ — a)cos B = 0.
This implies a = b = ¢ because the angles B, C are acute-angled (thanks to our
assumption a > b > ¢). O



