
Problema J196. Let I be the incenter of triangle ABC and let A′, B′, C ′

be the feet of altitudes from vertices A, B, C. If IA′ = IB′ = IC ′, then prove
that triangle ABC is equilateral.
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Let a = BC, b = CA, c = AB, s = (a+ b+ c)/2 and let A′′, B′′, C ′′ be the
feet of the perpendiculars from I to BC, CA, AB respectively.
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We have A′A′′ = |BA′′ −BA′| so, by using the known formulas BA′ =
c cosB, BA′′ = s− b (assuming wlog a ≥ b ≥ c) we have

A′A′′ = |s− b− c cosB| =
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Likewise we obtain

B′B′′ = |s− a− c cosA| =
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(observe that if A > 90◦ then AB′ = c cos(180◦ − A) = −c cosA and B′B′′ =
B′A+AB′′ = −c cosA+ s− a).

Since IA′ = IB′ the triangles △IA′A′′ and △IB′B′′ are congruent, so
A′A′′ = B′B′′. Hence from (1) and (2) it follows that
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b(b+ c− a)(b− c) = a(a+ c− b)(a− c) ⇒

a3 − b3 + ab2 − a2b+ bc2 − ac2 ⇒

(a− b)(a2 + b2 − c2) = 0

Therefore (a − b) cosC = 0, and analogously we obtain (c − a) cosB = 0.
This implies a = b = c because the angles B, C are acute-angled (thanks to our
assumption a ≥ b ≥ c). �
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