Problema J198. Find all pairs (x, y) for which $x!+y!+3$ is a perfect cube.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Because our expression is symmetric, without loss of generality we can assume $x \geq y$. Consider the following cases:
(a) If $x \leq 6$, we can easily verify that $x!+y!+3$ is a perfect cube only when $(x, y)=(5,2)$ and $(x, y)=(6,3)$

x / y	0	1	2	3	4	5	6
0	5	5	6	10	28	124	724
1	5	5	6	10	28	124	724
2	6	6	7	11	29	125	725
3	10	10	11	15	33	129	729
4	28	28	29	33	51	147	747
5	124	124	125	129	147	243	843
6	724	724	725	729	747	843	1443

(b) If $x>6, y \in\{0,1,2,5,6\}$, then $x!+y!+3 \equiv 3,4,5,6(\bmod 9)$. Therefore $x!+y!+3$ cannot be a perfect cube, since $z^{3} \equiv 0,1,8(\bmod 9)$ for every $z \in \mathbb{N}$.
(c) If $x>6, y=3$, we have three subcases:

- If $x=7, y=3$ then $x!+y!+3=5049$ which is not a perfect cube.
- If $x=8, y=3$ then $x!+y!+3=40329$ which is not a perfect cube.
- If $x \geq 9, y=3$ then $x!+y!+3=x!+9$ which is not a cube since $3 \mid x!+9$, whereas $27 \nmid x!+9$.
(d) If $x>6, y=4$, we have three subcases:
- If $x=7, y=4$ then $x!+y!+3=5067$ which is not a perfect cube.
- If $x=8, y=4$ then $x!+y!+3=40347$ which is not a perfect cube.
- If $x \geq 9, y=4$ then $x!+y!+3=x!+27$. It is easy to proof by induction that $x!+27>x^{3}$ for every $x \geq 5$. Therefore if were $x!+27=z^{3}$ we should have $x>z$ and consequently $z=3^{k}$ with $k>1$. Hence $x!+27=3^{3 k}$, but this is absurd since $81 \mid 3^{3 k}$ whereas $81 \nmid x!+27$.
(e) If $x>6$ and $y>6$ then $x!+y!+3$ cannot be a perfect cube since $x!+y!+3 \equiv 3(\bmod 9)$.

Finally $x!+y!+3$ is a perfect cube only for $(x, y) \in\{(5,2),(2,5),(6,3),(3,6)\}$.

