Problema J198. Find all pairs (x, y) for which x! + y! + 3 is a perfect cube.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Because our expression is symmetric, without loss of generality we can assume $x \ge y$. Consider the following cases:

(a) If $x \le 6$, we can easily verify that x! + y! + 3 is a perfect cube only when (x, y) = (5, 2) and (x, y) = (6, 3)

x/y	0	1	2	3	4	5	6
0	5	5	6	10	28	124	724
1	5	5	6	10	28	124	724
2	6	6	7	11	29	125	725
3	10	10	11	15	33	129	729
4	28	28	29	33	51	147	747
5	124	124	125	129	147	243	843
6	724	724	725	729	747	843	1443

- (b) If x > 6, $y \in \{0, 1, 2, 5, 6\}$, then $x! + y! + 3 \equiv 3, 4, 5, 6 \pmod{9}$. Therefore x! + y! + 3 cannot be a perfect cube, since $z^3 \equiv 0, 1, 8 \pmod{9}$ for every $z \in \mathbb{N}$.
- (c) If x > 6, y = 3, we have three subcases:
 - If x = 7, y = 3 then x! + y! + 3 = 5049 which is not a perfect cube.
 - If x = 8, y = 3 then x! + y! + 3 = 40329 which is not a perfect cube.
 - If $x \ge 9$, y = 3 then x! + y! + 3 = x! + 9 which is not a cube since $3 \mid x! + 9$, whereas $27 \nmid x! + 9$.
- (d) If x > 6, y = 4, we have three subcases:
 - If x = 7, y = 4 then x! + y! + 3 = 5067 which is not a perfect cube.
 - If x = 8, y = 4 then x! + y! + 3 = 40347 which is not a perfect cube.
 - If $x \ge 9$, y = 4 then x! + y! + 3 = x! + 27. It is easy to proof by induction that $x! + 27 > x^3$ for every $x \ge 5$. Therefore if were $x! + 27 = z^3$ we should have x > z and consequently $z = 3^k$ with k > 1. Hence $x! + 27 = 3^{3k}$, but this is absurd since $81 \mid 3^{3k}$ whereas $81 \nmid x! + 27$.
- (e) If x > 6 and y > 6 then x! + y! + 3 cannot be a perfect cube since $x! + y! + 3 \equiv 3 \pmod{9}$.

Finally x!+y!+3 is a perfect cube only for $(x, y) \in \{(5, 2), (2, 5), (6, 3), (3, 6)\}$.