Problem 363. Extend side $C B$ of triangle $A B C$ beyond $B$ to a point $D$ such that $D B=A B$. Let $M$ be the midpoint of side $A C$. Let the bisector of $\angle A B C$ intersect line $D M$ at $P$. Prove that $\angle B A P=\angle A C B$.

Solution by Ercole Suppa, Teramo, Italy.


Let $B C=a, C A=b, A B=c$. Since $B N$ is the bisector of $\angle A B C$ we have $A N=b c /(a+c)$, so

$$
N M=A M-A N=\frac{b}{2}-\frac{b c}{a+c}=\frac{b(a-c)}{2(a+c)}
$$

Considering line $D M$ cutting $\triangle B C N$, by Menelaus' theorem we get

$$
\begin{gathered}
\frac{B P}{P N} \cdot \frac{N M}{M C} \cdot \frac{C D}{B D}=1 \Rightarrow \\
\frac{B P}{P N}=\frac{M C \cdot B D}{N M \cdot C D}=\frac{\frac{b}{2} \cdot c}{\frac{b(a-c)}{2(a+c)} \cdot(a+c)}=\frac{c}{a-c}
\end{gathered}
$$

Thus $(a-c) \cdot B P=c \cdot P N$ and this implies

$$
\begin{gather*}
(a-c) \cdot B P=c \cdot(B N-B P) \quad \Rightarrow \\
a \cdot B P=c \cdot B N \quad \Rightarrow \quad \frac{B P}{A B}=\frac{B N}{B C} \tag{*}
\end{gather*}
$$

From $\left(^{*}\right)$, bearing in mind that $\angle A B P=\angle N B C$, it follows that $\triangle A B P$ and $\triangle C B N$ are similar. Therefore $\angle B A P=\angle N C B=\angle A C B$ and claim is proved.

