
Problem 363. Extend side CB of triangle ABC beyond B to a point D such
that DB = AB. Let M be the midpoint of side AC. Let the bisector of ∠ABC
intersect line DM at P . Prove that ∠BAP = ∠ACB.

Solution by Ercole Suppa, Teramo, Italy.
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Let BC = a, CA = b, AB = c. Since BN is the bisector of ∠ABC we have
AN = bc/(a+ c), so
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Considering line DM cutting 4BCN , by Menelaus’ theorem we get
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Thus (a− c) ·BP = c · PN and this implies

(a− c) ·BP = c · (BN −BP ) ⇒

a ·BP = c ·BN ⇒ BP
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From (*), bearing in mind that ∠ABP = ∠NBC, it follows that 4ABP
and 4CBN are similar. Therefore ∠BAP = ∠NCB = ∠ACB and claim is
proved. �
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