Problema O99. Let AB be a chord that is not a diameter of circle ω . Let T be a mobile point on AB. Construct circles ω_1 and ω_2 that are externally tangent to each other at T and internally tangent to ω at T_1 and T_2 , respectively. Let $X_1 \in AT_1 \cap TT_2$ and $X_2 \in AT_2 \cap TT_1$. Prove that X_1X_2 passes through a fixed point.

Proposed by Alex Anderson, Washington University in St. Louis, USA.

Solution by Ercole Suppa, Teramo, Italy

In the following proof we'll use two lemmata:

LEMMA 1. Let AB be a chord that is not a diameter of circle ω , let T be a point on AB, let ω_1 be a circle internally tangent to ω at T_1 and tangent to AB to the point T, let C, D be the intersection points of ω with the perpendicular bisector of AB, with C and T_1 lying on opposite sides of AB. The points C, T, T_1 are collinear.

Proof.

Let O_1 be the center of ω_1 . We have $TO_1 || CD$ because TO_1 and CD are both perpendicular to AB. The isosceles triangles $\Delta T_1 O_1 T$ and $\Delta T_1 OC$ are similars because $\angle T_1 O_1 T = \angle T_1 OC$. Thus $\angle O_1 TT_1 = \angle OCT_1$ and this implies that C, T, T_1 are collinears.

LEMMA 2. Let $H_a H_b H_c$ be the orthic triangle of $\triangle ABC$ and let K be the intersection point of $H_b H_c$ with the line BC. The point K is the harmonic conjugate of H_a with respect to B and C.

Proof.

We suppose, without loss of generality, that c < b. Since in $\triangle KH_bH_a$ the lines BH_b , AC are the internal and external angle bisectors, the points K and H_a are harmonic conjugates with respect to Band C.

Now we can proof that all the lines X_1X_2 passes through a fixed point.

Let C, D be the intersection points of ω with the perpendicular bisector of AB (with C and T_1 on the opposite sides of AB) and let F be the middle point of AB. We have:

- by LEMMA 1 the point C, T, T_1 are collinears; similarly the point D, T, T_2 are collinears;
- T is the orthocenter of triangle $\triangle CDE$;
- the quadrilateral $TFDT_1$ is cyclic because $CT_1 \perp T_1D$ and $EF \perp FD$; similarly the quadrilateral $CFTT_2$ is cyclic; denote with ω_1 , ω_2 the circumcircles of $TFDT_1$ and $CFTT_2$;
- the lines CT_1 , BA, DT_2 concur in the point E, radical center of three circles (ABC), (TCT_1) , (TDT_2) ;
- thus the triangles AT_1T_2 , CTD are perspective. Hence based on the Desarques theorem, we conclude that the points $X_1 = AT_2 \cap TT_1$, $P = T_1T_2 \cap CD$, $X_2 = AT_1 \cap TT_2$ are collinear;
- by LEMMA 2 the point P is harmonic conjugate of F with respect to the points C and D, i.e. P is the pole of the line AB wrt the circle ω.

Then P is a fixed point independent from the choice of the point T and the proof is completed.