Problema O99. Let $A B$ be a chord that is not a diameter of circle ω. Let T be a mobile point on $A B$. Construct circles ω_{1} and ω_{2} that are externally tangent to each other at T and internally tangent to ω at T_{1} and T_{2}, respectively. Let $X_{1} \in A T_{1} \cap T T_{2}$ and $X_{2} \in A T_{2} \cap T T_{1}$. Prove that $X_{1} X_{2}$ passes through a fixed point.

Proposed by Alex Anderson, Washington University in St. Louis, USA.
Solution by Ercole Suppa, Teramo, Italy
In the following proof we'll use two lemmata:
Lemma 1. Let $A B$ be a chord that is not a diameter of circle ω, let T be a point on $A B$, let ω_{1} be a circle internally tangent to ω at T_{1} and tangent to $A B$ to the point T, let C, D be the intersection points of ω with the perpendicular bisector of $A B$, with C and T_{1} lying on opposite sides of $A B$. The points C, T, T_{1} are collinear.

Proof.

Let O_{1} be the center of ω_{1}. We have $T O_{1} \| C D$ because $T O_{1}$ and $C D$ are both perpendicular to $A B$. The isosceles triangles $\Delta T_{1} O_{1} T$ and $\Delta T_{1} O C$ are similars because $\angle T_{1} O_{1} T=\angle T_{1} O C$. Thus $\angle O_{1} T T_{1}=\angle O C T_{1}$ and this implies that C, T, T_{1} are collinears.

Lemma 2. Let $H_{a} H_{b} H_{c}$ be the orthic triangle of $\triangle A B C$ and let K be the intersection point of $H_{b} H_{c}$ with the line $B C$. The point K is the harmonic conjugate of H_{a} with respect to B and C.

Proof.

We suppose, without loss of generality, that $c<b$. Since in $\triangle K H_{b} H_{a}$ the lines $B H_{b}, A C$ are the internal and external angle bisectors, the points K and H_{a} are harmonic conjugates with respect to B and C.

Now we can proof that all the lines $X_{1} X_{2}$ passes through a fixed point.

Let C, D be the intersection points of ω with the perpendicular bisector of $A B$ (with C and T_{1} on the opposite sides of $A B$) and let F be the middle point of $A B$. We have:

- by Lemma 1 the point C, T, T_{1} are collinears; similarly the point D, T, T_{2} are collinears;
- T is the orthocenter of triangle $\triangle C D E$;
- the quadrilateral $T F D T_{1}$ is cyclic because $C T_{1} \perp T_{1} D$ and $E F \perp F D$; similarly the quadrilateral $C F T T_{2}$ is cyclic; denote with ω_{1}, ω_{2} the circumcircles of $T F D T_{1}$ and $C F T T_{2}$;
- the lines $C T_{1}, B A, D T_{2}$ concur in the point E, radical center of three circles $(A B C),\left(T C T_{1}\right),\left(T D T_{2}\right)$;
- thus the triangles $A T_{1} T_{2}, C T D$ are perspective. Hence based on the Desarques theorem, we conclude that the points $X_{1}=A T_{2} \cap T T_{1}, P=$ $T_{1} T_{2} \cap C D, X_{2}=A T_{1} \cap T T_{2}$ are collinear;
- by Lemma 2 the point P is harmonic conjugate of F with respect to the points C and D, i.e. P is the pole of the line $A B$ wrt the circle ω.

Then P is a fixed point independent from the choice of the point T and the proof is completed.

