
Problema S100. Let ABC be an acute triangle with altitudes BE and
CF . Points Q and R lie on segments CE and BF , respectively, such that
CQ/QE = FR/RB. Determine the locus of the circumcenter of triangle AQR
when Q and R vary.
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If Q is a point of CE, the point R can be costructed in the following way:

• through point Q draw a line parallel to BE to intersect BC at point U ;

• through point U draw a line parallel to CF to intersect AB at point R;

From Thales’ theorem we have:
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so the point R satisfies the relation:
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The circle γ with diameter AU contains Ha, Q, R because

∠AQU = ∠ARU = ∠AHaU = 90◦

Thus the circumcenter of 4AQU is the mid-point O1 of AU . This implies
that the required locus is the set of mid-points of the cevians AU , where U is
a variable point of BC. In other words the locus is the segment joining the
mid-points M , N of the sides AB, AC. �


