Problema S100. Let $A B C$ be an acute triangle with altitudes $B E$ and $C F$. Points Q and R lie on segments $C E$ and $B F$, respectively, such that $C Q / Q E=F R / R B$. Determine the locus of the circumcenter of triangle $A Q R$ when Q and R vary.

Proposed by Alex Anderson, Washington University in St. Louis, USA

Solution by Ercole Suppa, Teramo, Italy

If Q is a point of $C E$, the point R can be costructed in the following way:

- through point Q draw a line parallel to $B E$ to intersect $B C$ at point U;
- through point U draw a line parallel to $C F$ to intersect $A B$ at point R;

From Thales' theorem we have:

$$
\frac{C Q}{Q E}=\frac{C U}{U B} \quad, \quad \frac{C U}{U B}=\frac{F R}{R B}
$$

so the point R satisfies the relation:

$$
\frac{C Q}{Q E}=\frac{F R}{R B}
$$

The circle γ with diameter $A U$ contains H_{a}, Q, R because

$$
\angle A Q U=\angle A R U=\angle A H_{a} U=90^{\circ}
$$

Thus the circumcenter of $\triangle A Q U$ is the mid-point O_{1} of $A U$. This implies that the required locus is the set of mid-points of the cevians $A U$, where U is a variable point of $B C$. In other words the locus is the segment joining the mid-points M, N of the sides $A B, A C$.

