Problema S101. Let a, b, c be distinct real numbers. Prove that

$$
\left(\frac{a}{a-b}+1\right)^{2}+\left(\frac{b}{b-c}+1\right)^{2}+\left(\frac{c}{c-a}+1\right)^{2} \geq 5
$$

Proposed by Roberto Bosch Cabrera, University of Havana, Cuba
Solution by Ercole Suppa, Teramo, Italy
The proposed inequality follows from:

$$
\begin{aligned}
& \left(\frac{a}{a-b}+1\right)^{2}+\left(\frac{b}{b-c}+1\right)^{2}+\left(\frac{c}{c-a}+1\right)^{2}-5= \\
= & \frac{\left(2 a^{2} b-a b^{2}-a^{2} c-3 a b c+2 b^{2} c+2 a c^{2}-b c^{2}\right)^{2}}{(a-b)^{2}(a-c)^{2}(b-c)^{2}}
\end{aligned}
$$

