Problema S102. Consider triangle $A B C$ with circumcenter O and incenter I. Let E and F be the points of tangency of the incircle with $A C$ and $A B$, respectively. Prove that $E F, B C, O I$ are concurrent if and only if $r_{a}^{2}=r_{b} r_{c}$, where r_{a}, r_{b}, r_{c} are the radii of the excircles.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

We will use homegeneous barycentric coordinates with respect $\triangle A B C$. Denote as usual by a, b, c, s, Δ the sides $B C, C A, A B$, the semiperimeter and the area of the triangle respectively. We have:

$$
\begin{aligned}
& E(s-c: 0: s-a) \quad, \quad F(s-b: s-a: 0) \quad, \quad I(a: b: c) \\
& O\left(a^{2}\left(-a^{2}+b^{2}+c^{2}\right), b^{2}\left(a^{2}-b^{2}+c^{2}\right), c^{2}\left(a^{2}+b^{2}-c^{2}\right)\right)
\end{aligned}
$$

Hence the equations of the lines $E F, I O$ are:

$$
\begin{aligned}
& E F \quad: \quad(s-a) x-(s-b) y-(s-c) z=0 \\
& I O \quad: \quad b c(b-c)(s-a) x+a c(c-a)(s-b) y+a b(a-b)(s-c) z=0
\end{aligned}
$$

The equation of the line $B C$ is $x=0$. Therefore the lines $E F, I O, B C$ are concurrent if and only if:

$$
\begin{array}{rlc}
\left|\begin{array}{ccc}
s-a & b-s & c-s \\
b c(b-c)(s-a) & a c(c-a)(s-b) & a b(a-b)(s-c) \\
1 & 0 & 0
\end{array}\right|=0 & \Longleftrightarrow \\
a(a+b-c)(a-b+c)\left(b^{2}+c^{2}-a b-a c\right)=0
\end{array}
$$

On the other hand we have:

$$
\begin{aligned}
r_{a}^{2}-r_{b} r_{c} & =\frac{\Delta^{2}}{(s-a)^{2}}-\frac{\Delta^{2}}{(s-b)(s-c)}= \\
& =\frac{s(s-b)(s-c)}{s-a}-s(s-a)= \\
& =\frac{(a+b+c)\left(b^{2}+c^{2}-a b-a c\right)}{2(a-b-c)}
\end{aligned}
$$

and thus we are done.

