Problema S185. Let A_{1}, A_{2}, A_{3} be non-collinear points on parabola $x^{2}=$ $4 p y, p>0$, and let $B_{1}=\ell_{2} \cap \ell_{3}, B_{2}=\ell_{3} \cap \ell_{1}, B_{3}=\ell_{1} \cap \ell_{2}$ where ℓ_{1}, ℓ_{2}, ℓ_{3} are tangents to the parabola at points A_{1}, A_{2}, A_{3}, respectively. Prove that $\left[A_{1} A_{2} A_{3}\right] /\left[B_{1} B_{2} B_{3}\right]$ is a costant and find its value.

Proposed by Arkady Alt, San Jose, California, USA
Solution by Ercole Suppa, Teramo, Italy
Let $A_{1}=\left(u, \frac{1}{4 p} u^{2}\right), A_{2}=\left(v, \frac{1}{4 p} v^{2}\right), A_{3}=\left(w, \frac{1}{4 p} w^{2}\right)$.

Observe that the equation of the tangent to the parabola $x^{2}=4 p y$ at its point $T\left(t, \frac{1}{4 p} t^{2}\right)$ is

$$
2 t(x-t)-4 p\left(y-\frac{1}{4 p} t^{2}\right)=0 \quad \Leftrightarrow \quad 2 t x-4 p y-t^{2}=0
$$

Therefore the equations of the lines $\ell_{1}, \ell_{2}, \ell_{3}$ are:

$$
\begin{aligned}
\ell_{1} & : 2 u x-4 p y-u^{2}=0 \\
\ell_{2} & : 2 v x-4 p y-v^{2}=0 \\
\ell_{1} & : 2 w x-4 p y-w^{2}=0
\end{aligned}
$$

After some algebra we get

$$
\begin{align*}
& B_{1}=\left(\frac{v+w}{2}, \frac{v w}{4 p}\right), \quad B_{2}=\left(\frac{u+w}{2}, \frac{u w}{4 p}\right), \quad B_{3}=\left(\frac{u+v}{2}, \frac{u v}{4 p}\right) \\
& {\left[A_{1} A_{2} A_{3}\right]=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ccc}
u & \frac{1}{4 p} u^{2} & 1 \\
v & \frac{1}{4 p} v^{2} & 1 \\
w & \frac{1}{4 p} w^{2} & 1
\end{array}\right)\right|=\frac{1}{8}\left|\frac{(u-v)(u-w)(v-w)}{p}\right|} \tag{*}
\end{align*}
$$

$\left[B_{1} B_{2} B_{3}\right]=\frac{1}{2}\left|\operatorname{det}\left(\begin{array}{ccc}\frac{v+w}{2} & \frac{v w}{4 p} & 1 \\ \frac{u+w}{2} & \frac{u w}{4 p} & 1 \\ \frac{u+v}{2} & \frac{u v}{4 p} & 1\end{array}\right)\right|=\frac{1}{16}\left|\frac{(u-v)(u-w)(v-w)}{p}\right| \quad(* *)$
Finally, by using $\left({ }^{*}\right),\left({ }^{* *}\right)$ we obtain $\frac{\left[A_{1} A_{2} A_{3}\right]}{\left[B_{1} B_{2} B_{3}\right]}=2$, establishing the result. \square

