Problema S195. Let $A B C$ be a triangle with incenter I and circumcenter O and let M be the midpoint of $B C$. The bisector of angle A intersects lines $B C$ and $O M$ at L and Q, respectively. Prove that

$$
A I \cdot L Q=I L \cdot I Q
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Denote as usual by a, b, c the sides of the triangle opposite to vertexes A, B, C, respectively, and by s the semiperimeter of the triangle.

Notice that $A I$ and $O M$ bisect the arc $B C$ of circumcircle (O) which not contains A. Therefore $Q \in(O)$ (see figure).

We have

$$
\begin{equation*}
\frac{A I}{I Q}=\frac{A B}{B Q} \cdot \frac{\sin \frac{B}{2}}{\sin \left(\frac{B}{2}+\frac{A}{2}\right)}=\frac{A B}{B Q} \cdot \frac{\sin \frac{B}{2}}{\cos \frac{C}{2}} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{I L}{L Q}=\frac{B I}{B Q} \cdot \frac{\sin \frac{B}{2}}{\sin \frac{A}{2}} \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that

$$
\begin{equation*}
A I \cdot L Q=I Q \cdot \frac{A B}{B Q} \cdot \frac{\sin \frac{B}{2}}{\cos \frac{C}{2}} \cdot I L \cdot \frac{B Q}{B I} \cdot \frac{\sin \frac{A}{2}}{\sin \frac{B}{2}}=I L \cdot I Q \cdot \frac{A B}{B I} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{C}{2}} \tag{3}
\end{equation*}
$$

Using the known formulas

$$
B I=\sqrt{\frac{a c(s-b)}{s}} \quad, \quad \sin \frac{A}{2}=\sqrt{\frac{(s-b)(s-c)}{b c}} \quad, \quad \cos \frac{C}{2}=\sqrt{\frac{s(s-c)}{a b}}
$$

we get

$$
\begin{equation*}
\frac{A B}{B I} \cdot \frac{\sin \frac{A}{2}}{\cos \frac{C}{2}}=c \sqrt{\frac{s}{a c(s-b)}} \sqrt{\frac{(s-b)(s-c)}{b c}} \sqrt{\frac{a b}{s(s-c)}}=1 \tag{4}
\end{equation*}
$$

From (3) and (4) it follows that $A I \cdot L Q=I L \cdot I Q$ and we are done.

