Problema S195. Let ABC be a triangle with incenter I and circumcenter
O and let M be the midpoint of BC. The bisector of angle A intersects lines
BC and OM at L and @, respectively. Prove that

Al-LQ =1L -1Q
Proposed by ITvan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy

Denote as usual by a, b, ¢ the sides of the triangle opposite to vertexes A,
B, C, respectively, and by s the semiperimeter of the triangle.

Notice that AI and OM bisect the arc BC' of circumcircle (O) which not
contains A. Therefore @ € (O) (see figure).

We have
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From (1) and (2) it follows that
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Using the known formulas
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From (3) and (4) it follows that Al - LQ = IL - IQ and we are done. d

we get




