
Problema U195. Given a positive integer n, let f(n) be the square of
the number of its digits. For example f(2) = 1 and f(123) = 9. Show that∑

∞

n=1
1

nf(n) is convergent.
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If k is the the number of digits of the positive integer n, then

10k ≤ n < 10k+1
⇒ k ≤ log10 n < k + 1 ⇒ k = [log10 n] + 1

Therefore f(n) = ([log10 n] + 1)
2
and consequently
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Setting g(n) = 1
n(log

10
n)2

, we have:
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2
n2

<
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so, by the comparison test,
∑

∞

n=1 2
ng(2n) < +∞ since

∑
∞

n=1
1
n2 < +∞.

By the the Cauchy condensation test, we get
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Finally, according to (1), the given series
∑

∞

n=1
1

nf(n) converges (by the

comparison test). �
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