Problema U195. Given a positive integer n, let $f(n)$ be the square of the number of its digits. For example $f(2)=1$ and $f(123)=9$. Show that $\sum_{n=1}^{\infty} \frac{1}{n f(n)}$ is convergent.

Proposed by Roberto Bosch Cabrera, Florida, USA
Solution by Ercole Suppa, Teramo, Italy
If k is the the number of digits of the positive integer n, then

$$
10^{k} \leq n<10^{k+1} \quad \Rightarrow \quad k \leq \log _{10} n<k+1 \quad \Rightarrow \quad k=\left[\log _{10} n\right]+1
$$

Therefore $f(n)=\left(\left[\log _{10} n\right]+1\right)^{2}$ and consequently

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n f(n)}=\sum_{n=1}^{\infty} \frac{1}{n\left(\left[\log _{10} n\right]+1\right)^{2}} \leq \sum_{n=1}^{\infty} \frac{1}{n\left(\log _{10} n\right)^{2}} \tag{1}
\end{equation*}
$$

Setting $g(n)=\frac{1}{n\left(\log _{10} n\right)^{2}}$, we have:

$$
2^{n} \cdot g\left(2^{n}\right)=2^{n} \cdot \frac{1}{2^{n}\left(\log _{10} 2^{n}\right)^{2}}=\frac{1}{\left(\log _{10} 2\right)^{2} n^{2}}<\frac{1}{n^{2}}
$$

so, by the comparison test, $\sum_{n=1}^{\infty} 2^{n} g\left(2^{n}\right)<+\infty$ since $\sum_{n=1}^{\infty} \frac{1}{n^{2}}<+\infty$.
By the the Cauchy condensation test, we get

$$
\sum_{n=1}^{\infty} g(n)=\sum_{n=1}^{\infty} \frac{1}{n\left(\log _{10} n\right)^{2}}<+\infty
$$

Finally, according to (1), the given series $\sum_{n=1}^{\infty} \frac{1}{n f(n)}$ converges (by the comparison test).

