Problema U195. Given a positive integer n, let f(n) be the square of the number of its digits. For example f(2) = 1 and f(123) = 9. Show that $\sum_{n=1}^{\infty} \frac{1}{nf(n)}$ is convergent.

Proposed by Roberto Bosch Cabrera, Florida, USA

Solution by Ercole Suppa, Teramo, Italy

If k is the number of digits of the positive integer n, then

 $10^k \le n < 10^{k+1} \quad \Rightarrow \quad k \le \log_{10} n < k+1 \quad \Rightarrow \quad k = [\log_{10} n] + 1$

Therefore $f(n) = \left(\left[\log_{10} n \right] + 1 \right)^2$ and consequently

$$\sum_{n=1}^{\infty} \frac{1}{nf(n)} = \sum_{n=1}^{\infty} \frac{1}{n \left(\left[\log_{10} n \right] + 1 \right)^2} \le \sum_{n=1}^{\infty} \frac{1}{n \left(\log_{10} n \right)^2} \tag{1}$$

Setting $g(n) = \frac{1}{n(\log_{10} n)^2}$, we have:

$$2^{n} \cdot g(2^{n}) = 2^{n} \cdot \frac{1}{2^{n} \left(\log_{10} 2^{n}\right)^{2}} = \frac{1}{\left(\log_{10} 2\right)^{2} n^{2}} < \frac{1}{n^{2}}$$

so, by the comparison test, $\sum_{n=1}^{\infty} 2^n g(2^n) < +\infty$ since $\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$.

By the the Cauchy condensation test, we get

$$\sum_{n=1}^{\infty} g(n) = \sum_{n=1}^{\infty} \frac{1}{n \left(\log_{10} n \right)^2} < +\infty$$

Finally, according to (1), the given series $\sum_{n=1}^{\infty} \frac{1}{nf(n)}$ converges (by the comparison test).