3439. Proposed by D.J. Smeenk, Zaltbommel, the Netherlands.

Let Γ be a circle with centre O and radius R. Line t is tangent to Γ at the point A, and P is a point on t distinct from A. The line ℓ distinct from t passes through P and intersects Γ at the points B and C. The point K is on the line $A C$ and such that $P K \| A B$, and the point L is on the line $A B$ and such that $P L \| A C$. Prove that $K L \perp O P$.

Solution by Mosca Sebastiano, Pescara, Italy and Ercole Suppa, Teramo, Italy

Let S the orthogonal projection of O onto $B C$, let R the midpoint of $P B$ and let $Q=A P \cap K L$. Since $\angle O A P=\angle O S P=90^{\circ}$, the quadrilateral $A O S P$ is cyclic, so

$$
\begin{equation*}
\angle P O A=\angle P S A \tag{1}
\end{equation*}
$$

Since $A L P K$ is a parallelogram, Q is the midpoint of $A P$. Therefore $Q R \| A B$ and this implies that

$$
\begin{equation*}
\angle K P A=\angle R Q P=\angle L A P=\angle B C A=\angle C P L \tag{2}
\end{equation*}
$$

Hence the triangles $A B C$ and $L B P$ are similar, so

$$
\begin{equation*}
\frac{A C}{P L}=\frac{A B}{B L}=\frac{B C}{P B} \quad \Rightarrow \quad \frac{A C}{P L}=\frac{C S}{P R} \tag{3}
\end{equation*}
$$

From (3), taking into account of $\angle R P L=\angle A C S$, it follows that $\triangle R P L \sim$ $\triangle S C A$ and this implies

$$
\begin{equation*}
\angle P L R=\angle C A S \tag{4}
\end{equation*}
$$

Finally, by using (1), (2), (4) and external angle theorem's, we have

$$
\begin{aligned}
\angle H Q P & =\angle H Q R+\angle R Q P=\angle C A S+\angle B A P=\angle S C A+\angle S A C= \\
& =\angle P S A=\angle P O A=90^{\circ}-\angle A P O=90^{\circ}-\angle Q P H
\end{aligned}
$$

Therefore $\angle P Q H+\angle Q P H=90^{\circ}$, so $K L \perp O P$ and the result is established.

