3452. Proposed by D.J. Smeenk, Zaltbommel, the Netherlands.

Prove the following and generalize these results.
(a) $\tan ^{2} 36^{\circ}+\tan ^{2} 72^{\circ}=10$,
(b) $\tan ^{4} 36^{\circ}+\tan ^{4} 72^{\circ}=90$,
(c) $\tan ^{6} 36^{\circ}+\tan ^{6} 72^{\circ}=850$,
(d) $\tan ^{8} 36^{\circ}+\tan ^{8} 72^{\circ}=8050$.

Solution by Ercole Suppa, Teramo, Italy
By using the well known results

$$
\sin 36^{\circ}=\frac{1}{4} \sqrt{10-2 \sqrt{5}}, \quad \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}
$$

and the double-angle formulas we have

$$
a=\tan ^{2} 36^{\circ}=5-2 \sqrt{5}, \quad b=\tan ^{2} 72^{\circ}=5+2 \sqrt{5}
$$

Therefore, taking into account that $a+b=10$ and $a b=5$, we obtain
(a) $\tan ^{2} 36^{\circ}+\tan ^{2} 72^{\circ}=a+b=10$,
(b) $\tan ^{4} 36^{\circ}+\tan ^{4} 72^{\circ}=a^{2}+b^{2}=(a+b)^{2}-2 a b=100-10=90$,
(c) $\tan ^{6} 36^{\circ}+\tan ^{6} 72^{\circ}=a^{3}+b^{3}=(a+b)^{3}-3 a b(a+b)=1000-150=850$,
(d) $\tan ^{8} 36^{\circ}+\tan ^{8} 72^{\circ}=a^{4}+b^{4}=\left(a^{2}+b^{2}\right)^{4}-2 a^{2} b^{2}=8100-50=8050$

By means of binomial theorem we can generalize these results, as follows

$$
x_{n}=\tan ^{n} 36^{\circ}+\tan ^{n} 72^{\circ}=(5-2 \sqrt{5})^{n}+(5+2 \sqrt{5})^{n}=\sum_{k=0}^{\left[\frac{n}{2}\right]}\binom{n}{2 k} 2^{2 k+1} \cdot 5^{n-k}
$$

Alternatively the terms of sequence $x_{n}=a^{n}+b^{n}$ can be calculated by using the recurrence equation

$$
x_{n+1}=10 x_{n}-5 x_{n-1}, \quad x_{1}=10, x_{2}=90
$$

