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Let d be a line exterior to a given circle Γ with center O. Let A be the or-
thogonal projection of O on the line d, M be a point on Γ, and X, Y be the
intersections of Γ, d with the circle Γ′ of diameter AM . Prove that the line XY
passes through a fixed point as M moves about Γ.

Solution by Ercole Suppa, Teramo, Italy and Sebastiano Mosca, Pescara, Italy

Let M be an arbitrary point on Γ; let C be the intersection of Γ with the line
through O parallel to d (with C and M lying on same side of OA); let B be the
orthogonal projection of C on the line d; let X, Y be the intersections of Γ, d
with the circle Γ′ of diameter AM ; let F = XY ∩ OA; let γ be the circle with
center F passing through O; let D be the symmetric of O with respect to point
F ; let E the symmetric of B with respect to OA; let H the midpoint of OB.
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Draw now the perpendicular bisectors of OB, which clearly pass through H and
F . Observe that the right triangles 4OHF and 4BAD are similar, since

∠HOF = ∠BED = ∠ABD

Therefore

OF : BD = OH : AB ⇒ OF =
OH ·BD
AB

(1)

Denoting with r, a the radius of Γ and the distance from O the the line d, by
the Pythagoras and second Euclid’s theorems, we have
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Hence
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From (1), (2) and (3) it follows that
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and this implies that F is a fixed point of the line OA. The proof is finished. �
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