3577. Proposed by Mehmet Sahin, Ankara, Turkey.

Let H be the orthocentre of the acute triangle $A B C$ with a^{\prime} on the ray $H A$ and such that $A A^{\prime}=B C$. Define B^{\prime}, C^{\prime} similarly. Prove that

$$
\operatorname{Area}\left(A^{\prime} B^{\prime} C^{\prime}\right)=4 \operatorname{Area}(A B C)+\frac{a^{2}+b^{2}+c^{2}}{2}
$$

Solution by Ercole Suppa, Teramo

Let R, Δ be the circumradius and the area of $\triangle A B C$; let D, E, F be the feet of altitudes onto $B C, C A, A B$ respectively. Bearing in mind the well known formula $A H=2 R \cos A$ and the extented sine law we have

$$
A^{\prime} H=a+2 R \cos A=2 R(\sin A+\cos A)
$$

and similar relations hold for $B^{\prime} H, C^{\prime} H$. Therefore, since

$$
\angle A^{\prime} H B^{\prime}=\angle A H F+\angle F H B=90^{\circ}-B+90^{\circ}-A=C
$$

we obtain

$$
\begin{align*}
\operatorname{Area}\left(A^{\prime} B^{\prime} H\right) & =\frac{1}{2} A^{\prime} H \cdot B^{\prime} H \cdot \sin C= \\
& =2 R^{2}(\sin A+\cos A)(\sin B+\cos B) \sin C= \\
& =2 R^{2}[\sin A \sin B+\cos A \cos B+\sin (A+B)] \sin C= \\
& =2 R^{2}\left(\sin A \sin B \sin C+\cos A+\cos B \sin C+\sin ^{2} C\right) \tag{1}
\end{align*}
$$

Hence, by using (1) and its cyclic relations, we get

$$
\begin{align*}
& \operatorname{Area}\left(A^{\prime} B^{\prime} C^{\prime}\right)= \\
= & \operatorname{Area}\left(A^{\prime} B^{\prime} H\right)+\operatorname{Area}\left(B^{\prime} H C^{\prime}\right)+\operatorname{Area}\left(C^{\prime} H A^{\prime}\right)= \\
= & 2 R^{2} \sum_{\text {cyclic }}\left(\sin A \sin B \sin C+\cos A \cos B \sin C+\sin ^{2} C\right)= \tag{2}\\
= & 2 R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C+3 \sin A \sin B \sin C+\sum_{\text {cyclic }} \cos A \cos B \sin C\right)
\end{align*}
$$

Now, notice that

$$
\begin{gather*}
2 R^{2}\left(\sin ^{2} A+\sin ^{2} B+\sin ^{2} C\right)=\frac{a^{2}+b^{2}+c^{2}}{2} \tag{3}\\
6 R^{2} \sin A \sin B \sin C=6 R^{2} \cdot \frac{a}{2 R} \cdot \frac{b}{2 R} \cdot \frac{c}{2 R}=\frac{3 a b c}{4 R}=3 \Delta \tag{4}
\end{gather*}
$$

Moreover, by using the projection's theorem $a=b \cos C+c \cos B$, we have

$$
\begin{align*}
& 2 R^{2} \sum_{\text {cyclic }} \cos A \cos B \sin C= \\
= & 2 R^{2}(\cos A \cos B \sin C+\cos A \cos C \sin B+\cos B \cos C \sin A)= \\
= & R(c \cos A \cos B+b \cos A \cos C+a \cos B \cos C)= \\
= & R[(c \cos B+b \cos C) \cos A+a \cos B \cos C]= \\
= & a R(\cos A+\cos B \cos C)= \\
= & a R[-\cos (B+C)+\cos B \cos C]= \\
= & a R \sin B \sin C= \\
= & \frac{a b c}{4 R}=\Delta \tag{5}
\end{align*}
$$

Finally, by plugging (3), (4), (5) into (2) we get the desired relation.

