Problema 11476. Let a, b and ¢ be the side-lengths of a triangle, and let r be
its inradius. Show that
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Proposed by Panagiote Ligouras, ”Leonardo da Vinci” High School, Noci, Italy

Solution by Ercole Suppa, Teramo, Italy. Denote by s and A the semiperimeter
and the area of triangle ABC respectively. By using the well known formulas

r=— ) A=+/s(s—a)(s—b)(s—c)
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the desired inequality rewrites as
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Taking into account Padoa’s inequality

abc > 8(s —a)(s — b)(s —¢)

it is enough to prove that
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Since (1) is symmetric, we can assume a < b < ¢. Thus
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and Chebyshev’s inequality yields
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From Nesbitt’s and AM-HM inequalities, we obtain
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Finally, from (2), (3), (4) we get (1) and the proof is finished. Equality holds
fora=b=c. ]

Alternative solution by Ercole Suppa, Teramo, Italy. As in the previous solution
it suffices to prove that
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Rewrite (1) in SOS (=sum of squares) form as follows
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where
a? 4+ b% + 7¢® + 6ab + 8bc + +8ca

(a+c)b+c)(b+c—a)la+c—Db)

and S,, Sp are determined similarly, by cyclic permutation. Since S, > 0,
Sp > 0 and S, > 0 we have
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and the conclusion follows. O



