Problema 11476. Let a, b and c be the side-lengths of a triangle, and let r be its inradius. Show that

$$
\frac{a^{2} b c}{(b+c)(b+c-a)}+\frac{b^{2} c a}{(c+a)(c+a-b)}+\frac{c^{2} a b}{(a+b)(a+b-c)} \geq 18 r^{2}
$$

Proposed by Panagiote Ligouras, "Leonardo da Vinci" High School, Noci, Italy Solution by Ercole Suppa, Teramo, Italy. Denote by s and Δ the semiperimeter and the area of triangle $A B C$ respectively. By using the well known formulas

$$
r=\frac{\Delta}{s} \quad, \quad \Delta=\sqrt{s(s-a)(s-b)(s-c)}
$$

the desired inequality rewrites as

$$
\sum_{\text {cyclic }} \frac{a^{2} b c}{(b+c)(b+c-a)} \geq \frac{18(s-a)(s-b)(s-c)}{s}
$$

Taking into account Padoa's inequality

$$
a b c \geq 8(s-a)(s-b)(s-c)
$$

it is enough to prove that

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{a}{(b+c)(b+c-a)} \geq \frac{9}{2(a+b+c)} \tag{1}
\end{equation*}
$$

Since (1) is symmetric, we can assume $a \leq b \leq c$. Thus

$$
\frac{a}{b+c} \leq \frac{b}{a+c} \leq \frac{c}{a+b} \quad, \quad \frac{1}{b+c-a} \leq \frac{1}{a+c-b} \leq \frac{1}{a+b-c}
$$

and Chebyshev's inequality yields

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{a}{(b+c)(b+c-a)} \geq \frac{1}{3} \sum_{\text {cyclic }} \frac{a}{b+c} \sum_{\text {cyclic }} \frac{1}{b+c-a} \tag{2}
\end{equation*}
$$

From Nesbitt's and AM-HM inequalities, we obtain

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{a}{b+c} \geq \frac{3}{2} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{1}{b+c-a} \geq \frac{9}{\sum_{\text {cyclic }}(b+c-a)}=\frac{9}{a+b+c} \tag{4}
\end{equation*}
$$

Finally, from (2), (3), (4) we get (1) and the proof is finished. Equality holds for $a=b=c$.

Alternative solution by Ercole Suppa, Teramo, Italy. As in the previous solution it suffices to prove that

$$
\begin{equation*}
\sum_{\text {cyclic }} \frac{a}{(b+c)(b+c-a)} \geq \frac{9}{2(a+b+c)} \tag{1}
\end{equation*}
$$

Rewrite (1) in SOS (=sum of squares) form as follows

$$
\begin{aligned}
& \sum_{\text {cyclic }} \frac{a}{(b+c)(b+c-a)}-\frac{9}{2(a+b+c)} \\
= & \sum_{\text {cyclic }}\left[\frac{a}{(b+c)(b+c-a)}-\frac{3}{2(a+b+c)}\right] \\
= & \sum_{\text {cyclic }} \frac{(2 a-b-c)(a+3 b+3 c)}{2(b+c)(b+c-a)(a+b+c)} \\
= & \frac{1}{2(a+b+c)}\left[\sum_{\text {cyclic }} \frac{(a-b)(a+3 b+3 c)}{(b+c)(b+c-a)}+\sum_{\text {cyclic }} \frac{(a-c)(a+3 b+3 c)}{(b+c)(b+c-a)}\right] \\
= & \frac{1}{2(a+b+c)}\left[\sum_{\text {cyclic }} \frac{(a-b)(a+3 b+3 c)}{(b+c)(b+c-a)}+\sum_{\text {cyclic }} \frac{(b-a)(b+3 c+3 a)}{(c+a)(c+a-b)}\right] \\
= & \frac{1}{2(a+b+c)} \sum_{\text {cyclic }} S_{c}(a-b)^{2}
\end{aligned}
$$

where

$$
S_{c}=\frac{a^{2}+b^{2}+7 c^{2}+6 a b+8 b c++8 c a}{(a+c)(b+c)(b+c-a)(a+c-b)}
$$

and S_{a}, S_{b} are determined similarly, by cyclic permutation. Since $S_{a} \geq 0$, $S_{b} \geq 0$ and $S_{c} \geq 0$ we have

$$
\sum_{\text {cyclic }} S_{c}(a-b)^{2} \geq 0
$$

and the conclusion follows.

