Problema 11480. Let a, b and ¢ be the lengths of the sides opposite vertices
A, B and C, respectively, in a non obtuse triangle. Let h,, hy and h. be the
corresponding lengths of the altitudes. Show that
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and determine the cases of equality.

Proposed by Omran Kouba, Higher Institute for Applied Sciences and
Technology, Damascus, Syria

Solution by Ercole Suppa, Teramo, Italy. Denote by s and A the semiperimeter
and the area of triangle ABC respectively. Since h, = 2A/a, and simmetrically
for b and ¢, the given inequality is equivalent to
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From Heron’s formula we have
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so (1) rewrites as
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Since AABC' is an non obtuse triangle, we have cos A > 0, cos B > 0,
cosC >0, so

r=b0+c*-a>>0, y=a>+-0>>0, z=ada>+b>—>>0 (3)

From (3) it follows that
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and plugging these in (2), the desired inequality transforms into
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which is a known result (Iran TST 1996). Expanding this last one, we obtain
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which, according to Muirhead’s theorem and Schur’s inequality, it’s a sum of
three nonnegative terms.

Equality holds for + = y = z or x = y, z = 0 up to permutation, i.e.
a = b = ¢ (equilateral triangle) or ¢ = b and ¢ = av/2 up to permutations
(isosceles right-angled triangle). O



