Problema 11480. Let a, b and c be the lengths of the sides opposite vertices A, B and C, respectively, in a non obtuse triangle. Let h_{a}, h_{b} and h_{c} be the corresponding lengths of the altitudes. Show that

$$
\left(\frac{h_{a}}{a}\right)^{2}+\left(\frac{h_{b}}{b}\right)^{2}+\left(\frac{h_{c}}{c}\right)^{2} \geq \frac{9}{4}
$$

and determine the cases of equality.
Proposed by Omran Kouba, Higher Institute for Applied Sciences and Technology, Damascus, Syria

Solution by Ercole Suppa, Teramo, Italy. Denote by s and Δ the semiperimeter and the area of triangle $A B C$ respectively. Since $h_{a}=2 \Delta / a$, and simmetrically for b and c, the given inequality is equivalent to

$$
\begin{equation*}
\sum_{\text {cyclic }}\left(\frac{2 \Delta}{a}\right)^{2} \geq \frac{9}{4} \quad \Longleftrightarrow \quad \sum_{\text {cyclic }} \frac{1}{a^{2}} \geq \frac{9}{16 \Delta^{2}} \tag{1}
\end{equation*}
$$

From Heron's formula we have

$$
\begin{gathered}
\Delta=\sqrt{s(s-a)(s-b)(s-c)} \Leftrightarrow \\
16 \Delta^{2}=2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}
\end{gathered}
$$

so (1) rewrites as

$$
\begin{equation*}
\frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}} \geq \frac{9}{2 a^{2} b^{2}+2 b^{2} c^{2}+2 c^{2} a^{2}-a^{4}-b^{4}-c^{4}} \tag{2}
\end{equation*}
$$

Since $\triangle A B C$ is an non obtuse triangle, we have $\cos A \geq 0, \cos B \geq 0$, $\cos C \geq 0$, so

$$
\begin{equation*}
x=b^{2}+c^{2}-a^{2} \geq 0, \quad y=a^{2}+c^{2}-b^{2} \geq 0, \quad z=a^{2}+b^{2}-c^{2} \geq 0 \tag{3}
\end{equation*}
$$

From (3) it follows that

$$
a^{2}=\frac{y+z}{2}, \quad b^{2}=\frac{x+z}{2}, \quad c^{2}=\frac{x+y}{2}
$$

and plugging these in (2), the desired inequality transforms into

$$
\frac{1}{(x+y)^{2}}+\frac{1}{(y+z)^{2}}+\frac{1}{(z+x)^{2}} \geq \frac{9}{4(x y+y z+z x)} \quad, \quad \forall x, y, z \geq 0
$$

which is a known result (Iran TST 1996). Expanding this last one, we obtain

$$
\left(\sum_{\text {sym }} x^{5} y-\sum_{\text {sym }} x^{4} y^{2}\right)+3\left(\sum_{\text {sym }} x^{5} y-\sum_{\text {sym }} x^{3} y^{3}\right)+2 x y z\left(3 x y z+\sum_{\text {cyclic }} x^{3}-\sum_{\text {sym }} x^{2} y\right) \geq 0
$$

which, according to Muirhead's theorem and Schur's inequality, it's a sum of three nonnegative terms.

Equality holds for $x=y=z$ or $x=y, z=0$ up to permutation, i.e. $a=b=c$ (equilateral triangle) or $a=b$ and $c=a \sqrt{2}$ up to permutations (isosceles right-angled triangle).

