Problema J115. Find all positive integers n for which $\sqrt{\sqrt{n}+\sqrt{n+2009}}$ is an integer.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin
Andrica, Babes-Bolyai University, Romania
Solution by Ercole Suppa, Teramo, Italy
Let m be an integer such that

$$
\sqrt{\sqrt{n}+\sqrt{n+2009}}=m \quad \Longrightarrow \quad \sqrt{n}+\sqrt{n+2009}=m^{2}
$$

By setting $x=\sqrt{n+2009}, y=\sqrt{n}$ we have

$$
\left\{\begin{array} { l }
{ x + y = m ^ { 2 } } \\
{ x ^ { 2 } - y ^ { 2 } = 2 0 0 9 }
\end{array} \Rightarrow \left\{\begin{array} { l }
{ x + y = m ^ { 2 } } \\
{ x - y = \frac { 2 0 0 9 } { m ^ { 2 } } }
\end{array} \Rightarrow \left\{\begin{array}{l}
x=\frac{1}{2}\left(m^{2}+\frac{2009}{m^{2}}\right) \\
y=\frac{1}{2}\left(m^{2}+\frac{2009}{m^{2}}\right)
\end{array}\right.\right.\right.
$$

Therefore

$$
\begin{equation*}
4 n=4 y^{2}=m^{4}+\frac{2009^{2}}{m^{4}}-4018 \tag{*}
\end{equation*}
$$

and this implies that m^{4} divides 2009^{2}.
The divisors of 2009^{2} are
$\{1,7,41,49,287,343,1681,2009,2401,11767,14063,82369,98441,576583,4036081\}$
and, between them, the only fourth powers are $m=1$ and $m=2401=7^{4}$. If $m=1$ from $(*)$ follows that $n=1008016$ which not verify the required condition, whereas if $m=7$ we have $n=16$ and

$$
\sqrt{\sqrt{16}+\sqrt{16+2009}}=7
$$

Thus the only n for which $\sqrt{\sqrt{n}+\sqrt{n+2009}}$ is an integer is $n=16$.

