Problema J115. Find all positive integers n for which $\sqrt{\sqrt{n} + \sqrt{n + 2009}}$ is an integer.

Proposed by Titu Andreescu, University of Texas at Dallas, USA and
Dorin
Andrica, Babes-Bolyai University, Romania

Solution by Ercole Suppa, Teramo, Italy

Let m be an integer such that

$$\sqrt{\sqrt{n} + \sqrt{n + 2009}} = m \qquad \Longrightarrow \qquad \sqrt{n} + \sqrt{n + 2009} = m^2$$

By setting $x = \sqrt{n + 2009}$, $y = \sqrt{n}$ we have

$$\begin{cases} x+y=m^2 \\ x^2-y^2=2009 \end{cases} \Rightarrow \begin{cases} x+y=m^2 \\ x-y=\frac{2009}{m^2} \end{cases} \Rightarrow \begin{cases} x=\frac{1}{2}\left(m^2+\frac{2009}{m^2}\right) \\ y=\frac{1}{2}\left(m^2+\frac{2009}{m^2}\right) \end{cases}$$

Therefore

$$4n = 4y^2 = m^4 + \frac{2009^2}{m^4} - 4018 \tag{*}$$

and this implies that m^4 divides 2009^2 .

The divisors of 2009^2 are

 $\{1, 7, 41, 49, 287, 343, 1681, 2009, 2401, 11767, 14063, 82369, 98441, 576583, 4036081\}$

and, between them, the only fourth powers are m = 1 and $m = 2401 = 7^4$. If m = 1 from (*) follows that n = 1008016 which not verify the required condition, whereas if m = 7 we have n = 16 and

$$\sqrt{\sqrt{16} + \sqrt{16 + 2009}} = 7$$

Thus the only n for which $\sqrt{\sqrt{n} + \sqrt{n+2009}}$ is an integer is n = 16.