Problema J117. Let a, b, c be positive real numbers. Prove that

$$
\frac{a}{2 a^{2}+b^{2}+3}+\frac{b}{2 b^{2}+c^{2}+3}+\frac{c}{2 c^{2}+a^{2}+3} \leq \frac{1}{2}
$$

Proposed by An Zhen-ping, Xianyang Normal University, China
Solution by Ercole Suppa, Teramo, Italy
Since $a^{2}+1 \geq 2 a, b^{2}+1 \geq 2 b, c^{2}+1 \geq 2 c$ we have

$$
\sum_{\text {cyclic }} \frac{a}{2 a^{2}+b^{2}+3} \leq \sum_{\text {cyclic }} \frac{a}{4 a+2 b}
$$

so we only need to prove that

$$
\sum_{\text {cyclic }} \frac{a}{2 a+b} \leq 1
$$

After easy computations the last inequality becomes

$$
\frac{a b^{2}+b c^{2}+c a^{2}-3 a b c}{(2 a+b)(2 b+c)(2 c+a)} \geq 0
$$

which is true in virtue of AM-GM inequality

$$
a b^{2}+b c^{2}+c a^{2} \geq 3 \sqrt[3]{a^{3} b^{3} c^{3}}=3 a b c
$$

Thus, the inequality is proven. The equality holds if and only if $a=b=c=1$.

