Problema J121. For an even integer n consider a positive integer N having exactly n^{2} divisors greater than 1 . Prove that N is the fourth power of an integer.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Let us begin by proving the following:
Lemma. If an odd prime p divides the sum of the squares of two relatively prime integers, then it must be of the form $4 k+1$.

Proof. Let a, b be two relatively prime integers and p an odd prime such that $p \mid a^{2}+b^{2}$. We have $a^{2} \equiv-b^{2}(\bmod p)$. Hence by raising the congruence to the power $(p-1) / 2$ we obtain

$$
a^{p-1} \equiv(-1)^{\frac{p-1}{2}} b^{p-1} \quad(\bmod p)
$$

But, since $(a, b)=1$, the numbers a, b are not divisible by p, whence, by the Fermat's little Theorem $a^{p-1} \equiv b^{p-1} \equiv 1(\bmod p)$. Therefore

$$
(-1)^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p)
$$

and this implies that $(p-1) / 2$ is even, because p is an odd prime. Thus p must be of the form $4 k+1$ as desired.

Coming back to the problem, let $N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}$ be the prime factorization of N. Employing the well known formula on the number of divisors of N we get

$$
\left(a_{1}+1\right)\left(a_{1}+1\right) \cdots\left(a_{1}+1\right)=n^{2}+1
$$

Since $(n, 1)=1$ by the LEMMA we have that the prime factors of $n^{2}+1$ are all of the form $4 k+1$. Therefore for each $i \in\{1,2, \ldots, r\}$ there exist $b_{i} \in \mathbb{Z}$ such that $a_{i}+1=4 b_{i}+1$ (since the product of numbers congruent to $1 \bmod 4$ is congruent to $1 \bmod 4$). Consequently

$$
N=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{r}^{a_{r}}=p_{1}^{4 b_{1}} p_{2}^{4 b_{2}} \cdots p_{r}^{4 b_{r}}=\left(p_{1}^{b_{1}} p_{2}^{b_{2}} \cdots p_{r}^{b_{r}}\right)^{4}
$$

and the proof is complete.

