Problema J123. Solve in prime numbers the equation: $x^{y}+y^{x}=z$.
Proposed by Lucian Petrescu, "Henri Coanda" College, Tulcea, Romania
Solution by Ercole Suppa, Teramo, Italy
Since z is a prime number x and y must have different parity. Without loss of generality we can assume that x is an odd prime and $y=2$. The given equation rewrites as

$$
\begin{equation*}
x^{2}+2^{x}=z \quad, \quad x, z \text { prime numbers } \tag{1}
\end{equation*}
$$

Taking into account that $2^{x} \equiv-1(\bmod 3)$, it follows that $x \equiv 0(\bmod 3)$, because if $x \equiv 1$ or $x \equiv 2(\bmod 3)$ we should have $x^{2} \equiv 1(\bmod 3)$ so, by (1) :

$$
z=x^{2}+2^{x} \equiv 0 \quad(\bmod 3) \quad \Rightarrow \quad z=3(\text { since } z \text { is prime }) \quad \Rightarrow \quad x=1
$$

and this is impossible since x is a prime number.
Now $x \equiv 0(\bmod 3)$ yields $x=3$, since x is a prime number. Therefore the only solutions are $(3,2,17)$ and $(2,3,17)$, by simmetry.

