Problema J123. Solve in prime numbers the equation: $x^y + y^x = z$.

Proposed by Lucian Petrescu, "Henri Coanda" College, Tulcea, Romania

Solution by Ercole Suppa, Teramo, Italy

Since z is a prime number x and y must have different parity. Without loss of generality we can assume that x is an odd prime and y = 2. The given equation rewrites as

$$x^2 + 2^x = z$$
 , x, z prime numbers (1)

Taking into account that $2^x \equiv -1 \pmod{3}$, it follows that $x \equiv 0 \pmod{3}$, because if $x \equiv 1$ or $x \equiv 2 \pmod{3}$ we should have $x^2 \equiv 1 \pmod{3}$ so, by (1):

$$z = x^2 + 2^x \equiv 0 \pmod{3} \Rightarrow z = 3 \text{ (since } z \text{ is prime)} \Rightarrow x = 1$$

and this is impossible since x is a prime number.

Now $x \equiv 0 \pmod{3}$ yields x = 3, since x is a prime number. Therefore the only solutions are (3, 2, 17) and (2, 3, 17), by simmetry.