Problema J124. Let a and b be integers such that $|b-a|$ is an odd prime. Prove thet $P(x)=(x-a)(x-b)-p$ is irreducible in $\mathbb{Z}[X]$ for any prime p.

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
Assume by contradiction that $P(x)$ is reducible. Then there exists $c \in \mathbb{Z}$ such that $P(c)=0$, i.e.

$$
p=(c-a)(c-b)
$$

Since p is prime, one of the factors $c-a$ or $c-b$ must be equal to $\pm p$. Without loss of generality we can suppose that

$$
\begin{equation*}
c-a= \pm p \quad, \quad c-b= \pm 1 \tag{1}
\end{equation*}
$$

From (1) it follows that

$$
\begin{equation*}
|b-a|=|1-p| \tag{2}
\end{equation*}
$$

so $p=2$, because $|b-a|$ is odd and p is prime. Then, from (2), we get $|b-a|=1$ reaching a contradiction because $|b-a|$ is prime. The proof is finished.

