Problema J125. Let ABC be an isosceles triangle with ZA = 100°. Denote
by BL the angle bisector of angle ZABC'. Prove that AL+ BL = BC.

Proposed by Andrei Razvan Baleanu, ”G.Cosbuc” National College, Romania

Solution by Ercole Suppa, Teramo, Italy

Let us denote BC' = a, AB = AC = b, AL = z as in figure.

The internal bisector theorem yields:
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The length of the angle bisector BL is given by
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In order to complete the proof we need the following identity
cos 20° = cos 40° + cos 80° (3)

which is true because
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From (1), (2), (3), taking into account that a = 2bcos40°, we have
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and the proof is complete. [



