Problema J125. Let ABC be an isosceles triangle with $\angle A = 100^{\circ}$. Denote by BL the angle bisector of angle $\angle ABC$. Prove that AL + BL = BC.

Proposed by Andrei Razvan Baleanu, "G.Cosbuc" National College, Romania Solution by Ercole Suppa, Teramo, Italy

Let us denote BC = a, AB = AC = b, AL = x as in figure.

The internal bisector theorem yields:

$$x:(b-x)=b:a \qquad \Rightarrow \qquad AL=x=rac{b^2}{a+b}$$
 (1)

The length of the angle bisector BL is given by

$$BL = \frac{2ab}{a+b}\cos 20^{\circ} \tag{2}$$

In order to complete the proof we need the following identity

$$\cos 20^\circ = \cos 40^\circ + \cos 80^\circ \tag{3}$$

which is true because

$$\cos 40^\circ + \cos 80^\circ = 2\cos \frac{40^\circ + 80^\circ}{2}\cos \frac{40^\circ - 80^\circ}{2} = 2\cdot \frac{1}{2}\cdot \cos(-20^\circ) = \cos 20^\circ$$

From (1), (2), (3), taking into account that $a = 2b\cos 40^{\circ}$, we have

$$AL + BL = \frac{b^2}{a+b} + \frac{2ab}{a+b}\cos 20^\circ = \frac{b^2 + 2ab\cos 20^\circ}{a+b} =$$

$$= \frac{b^2 + 4b^2\cos 20^\circ\cos 40^\circ}{2b\cos 40^\circ + b} = \frac{1+4\cos 20^\circ\cos 40^\circ}{2\cos 40^\circ + 1}b =$$

$$= \frac{1+4\cdot\frac{1}{2}\left(\cos 60^\circ + \cos 20^\circ\right)}{2\cos 40^\circ + 1}b = \frac{2+2\cos 20^\circ}{2\cos 40^\circ + 1}b =$$

$$= \frac{2+2\left(\cos 40^\circ + \cos 80^\circ\right)}{2\cos 40^\circ + 1}b = \left(1+\frac{2\cos 80^\circ + 1}{2\cos 40^\circ + 1}\right)b =$$

$$= \left(1+\frac{2\left(2\cos^2 40^\circ - 1\right) + 1}{2\cos 40^\circ + 1}\right)b = \left(1+\frac{4\cos^2 40^\circ - 1}{2\cos 40^\circ + 1}\right)b =$$

$$= (1+2\cos 40^\circ - 1)b = 2b\cos 40^\circ = a = BC$$

and the proof is complete.