Problema J125. Let $A B C$ be an isosceles triangle with $\angle A=100^{\circ}$. Denote by $B L$ the angle bisector of angle $\angle A B C$. Prove that $A L+B L=B C$.

Proposed by Andrei Razvan Baleanu, "G.Cosbuc" National College, Romania
Solution by Ercole Suppa, Teramo, Italy
Let us denote $B C=a, A B=A C=b, A L=x$ as in figure.

The internal bisector theorem yields:

$$
\begin{equation*}
x:(b-x)=b: a \quad \Rightarrow \quad A L=x=\frac{b^{2}}{a+b} \tag{1}
\end{equation*}
$$

The length of the angle bisector $B L$ is given by

$$
\begin{equation*}
B L=\frac{2 a b}{a+b} \cos 20^{\circ} \tag{2}
\end{equation*}
$$

In order to complete the proof we need the following identity

$$
\begin{equation*}
\cos 20^{\circ}=\cos 40^{\circ}+\cos 80^{\circ} \tag{3}
\end{equation*}
$$

which is true because

$$
\cos 40^{\circ}+\cos 80^{\circ}=2 \cos \frac{40^{\circ}+80^{\circ}}{2} \cos \frac{40^{\circ}-80^{\circ}}{2}=2 \cdot \frac{1}{2} \cdot \cos \left(-20^{\circ}\right)=\cos 20^{\circ}
$$

From (1), (2), (3), taking into account that $a=2 b \cos 40^{\circ}$, we have

$$
\begin{aligned}
A L+B L & =\frac{b^{2}}{a+b}+\frac{2 a b}{a+b} \cos 20^{\circ}=\frac{b^{2}+2 a b \cos 20^{\circ}}{a+b}= \\
& =\frac{b^{2}+4 b^{2} \cos 20^{\circ} \cos 40^{\circ}}{2 b \cos 40^{\circ}+b}=\frac{1+4 \cos 20^{\circ} \cos 40^{\circ}}{2 \cos 40^{\circ}+1} b= \\
& =\frac{1+4 \cdot \frac{1}{2}\left(\cos 60^{\circ}+\cos 20^{\circ}\right)}{2 \cos 40^{\circ}+1} b=\frac{2+2 \cos 20^{\circ}}{2 \cos 40^{\circ}+1} b= \\
& =\frac{2+2\left(\cos 40^{\circ}+\cos 80^{\circ}\right)}{2 \cos 40^{\circ}+1} b=\left(1+\frac{2 \cos 80^{\circ}+1}{2 \cos 40^{\circ}+1}\right) b= \\
& =\left(1+\frac{2\left(2 \cos ^{2} 40^{\circ}-1\right)+1}{2 \cos 40^{\circ}+1}\right) b=\left(1+\frac{4 \cos ^{2} 40^{\circ}-1}{2 \cos 40^{\circ}+1}\right) b= \\
& =\left(1+2 \cos 40^{\circ}-1\right) b=2 b \cos 40^{\circ}=a=B C
\end{aligned}
$$

and the proof is complete.

