Problema J126. Let a, b, c be positive real numbers. Prove that

$$
3\left(a^{2} b^{2}+b^{2} c^{2}+c^{2} a^{2}\right)\left(a^{2}+b^{2}+c^{2}\right) \geq\left(a^{2}+a b+b^{2}\right)\left(b^{2}+b c+c^{2}\right)\left(c^{2}+c a+a^{2}\right)
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Due to simmetry we may suppose $a \leq b \leq c$, and put $b=a+u, c=a+u+v$ where $u, v \geq 0$. By a tedious calculation it can be readily checked that the given inequality rewrites as

$$
\begin{aligned}
& 6 a^{4} u^{2}+18 a^{3} u^{3}+21 a^{2} u^{4}+12 a u^{5}+3 u^{6}+6 a^{4} u v+27 a^{3} u^{2} v+ \\
& +42 a^{2} u^{3} v+30 a u^{4} v+9 u^{5} v+6 a^{4} v^{2}+21 a^{3} u v^{2}+36 a^{2} u^{2} v^{2}+ \\
& +30 a u^{3} v^{2}+11 u^{4} v^{2}+6 a^{3} v^{3}+15 a^{2} u v^{3}+15 a u^{2} v^{3}+7 u^{3} v^{3}+ \\
& +3 a^{2} v^{4}+3 a u v^{4}+2 u^{2} v^{4} \geq 0
\end{aligned}
$$

Since $a, u, v \geq 0$ the left hand side is non negative, and the inequality is proved. Equality holds for $u=v=0$, i.e. for $a=b=c$.

