Problema J130. Consider a triangle $A B C$. Let D the orthogonal projection of A onto $B C$ and let E and F be points on lines $A B$ and $A C$ respectively such that $\angle A D E=\angle A D F$. Prove that the lines $A D, B F$, and $C E$ are concurrent.

Proposed by Francisco Javier García Capitán, Spain
Solution by Ercole Suppa, Teramo, Italy
We will prove a lemma first:
Lemma. If P is a point on the side $B C$ of a triangle $\triangle A B C$ we have

$$
\frac{P B}{P C}=\frac{A B}{A C} \cdot \frac{\sin \angle P A B}{\sin \angle P A C}
$$

Proof.

In triangles $\triangle P A B$ and $\triangle P A C$, the law of sines gives

$$
\begin{gathered}
\frac{P B}{\sin \angle P A B}=\frac{A B}{\sin \angle A P B} \\
\frac{P C}{\sin \angle P A C}=\frac{A C}{\sin \left(180^{\circ}-\angle A P B\right)}=\frac{A C}{\sin \angle A P B}
\end{gathered}
$$

Dividing the above relations we get the desired result.
Coming back to the problem, let us denote $x=\angle A D E=\angle A D F$, as shown in figure.

By the Lemma we have

$$
\begin{aligned}
& \frac{A E}{E B}=\frac{A D}{B D} \cdot \frac{\sin x}{\sin \left(90^{\circ}-x\right)} \\
& \frac{C F}{F A}=\frac{D C}{A D} \cdot \frac{\sin \left(90^{\circ}-x\right)}{\sin x}
\end{aligned}
$$

Therefore

$$
\frac{A E}{E B} \cdot \frac{B D}{D C} \cdot \frac{C F}{F A}=\frac{A D}{B D} \cdot \frac{\sin x}{\sin \left(90^{\circ}-x\right)} \cdot \frac{B D}{D C} \cdot \frac{D C}{A D} \cdot \frac{\sin \left(90^{\circ}-x\right)}{\sin x}=1
$$

so, by Ceva's theorem the lines $A D, B F$, and $C E$ are concurrent and we are done.

