Problema J134. How many positive integers n less than 2009 are divisible by $\lfloor\sqrt[3]{n}\rfloor$?

Proposed by Dorin Andrica, "Babes-Bolyai" University, Romania

Solution by Ercole Suppa, Teramo, Italy
Let us say a positive integer n is nice if it is divisible by $\lfloor\sqrt[3]{n}\rfloor$. Denote by $N(X)$ the number of nice numbers contained in a set X.

Since $11^{3}<2009<12^{3}$, in order to count how many nice number are less than 2009, consider the following partition of $X=\{1,2, \ldots, 2009\}$:

$$
\begin{aligned}
X_{k} & =\left\{k^{3}, k^{3}+1, \ldots,(k+1)^{3}-1\right\}, \quad k=1,2, \ldots, 11 \\
X_{12} & =\left\{12^{3}, 1729,2009\right\}
\end{aligned}
$$

We have $[\sqrt[3]{x}]=k$ for every $x \in X_{k}$ so

$$
\begin{aligned}
N\left(X_{k}\right) & =\left[\frac{(k+1)^{3}-1}{k}\right]-\left[\frac{k^{3}-1}{k}\right]= \\
& =\left[(k+1)^{2}+k+2\right]-\left[k^{2}-\frac{1}{k}\right]= \\
& =k^{2}+3 k+3-\left(k^{2}-1\right)=3 k+4
\end{aligned}
$$

Therefore

$$
\begin{aligned}
N(X) & =\sum_{k=1}^{12} N\left(X_{k}\right)=\sum_{k=1}^{11}(3 k+4)+N\left(X_{12}\right)= \\
& =3 \sum_{k=1}^{11} k+44+\left[\frac{2009}{12}\right]-\left[\frac{1727}{12}\right]= \\
& =198+44+167-143=266
\end{aligned}
$$

and we are done.

