Problema J135. Find all n for which the number of diagonals of a convex n-gon is a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
The number of diagonals of a convex n-gon is given by

$$
\binom{n}{2}-n=\frac{n(n-1)}{2}-n=\frac{n^{3}-n}{2}
$$

so it is enough to solve the following diophantine equation

$$
\begin{equation*}
n^{2}-3 n=2 m^{2}, \quad n, m \in \mathbb{N} \tag{1}
\end{equation*}
$$

From (1) follows that

$$
n^{2}-3 n \equiv 2 m^{2} \quad(\bmod 3) \quad \Rightarrow \quad n \equiv 0, m \equiv 0 \quad(\bmod 3)
$$

Thus, setting $n=3 a$ and $m=3 y(a, y \in \mathbb{N})$, the equation (1) is equivalent to

$$
\begin{align*}
9 a^{2}-9 a & =18 y^{2} & & \Leftrightarrow \\
a^{2}-a & =2 y^{2} & & \Leftrightarrow \\
4 a^{2}-4 a+1 & =8 y^{2}+1 & & \Leftrightarrow \\
(2 a-1)^{2}-8 y^{2} & =1 & & \Leftrightarrow \\
x^{2}-8 y^{2} & =1 & & \tag{2}
\end{align*}
$$

where we have put $x=2 a-1$.
The equation (2) is a Pell's equation $x^{2}-D y^{2}=1$ with fundamental solution $x_{1}=3, y_{1}=1$, so all positive solutions are of the form x_{k}, y_{k}, where

$$
x_{k}+y_{k} \sqrt{8}=\left(x_{1}+y_{1} \sqrt{D}\right)^{k}
$$

The solutions x_{k}, y_{k} can be computed from the formulas

$$
\left\{\begin{array}{l}
x_{k}=\frac{1}{2}\left[\left(x_{1}+y_{1} \sqrt{D}\right)^{k}+\left(x_{1}-y_{1} \sqrt{D}\right)^{k}\right] \\
y_{k}=\frac{1}{2 \sqrt{D}}\left[\left(x_{1}+y_{1} \sqrt{D}\right)^{k}+\left(x_{1}-y_{1} \sqrt{D}\right)^{k}\right]
\end{array}\right.
$$

or from the recursive formulas

$$
\left\{\begin{array} { l }
{ x _ { k + 1 } = x _ { 1 } x _ { k } + D y _ { 1 } y _ { k } } \tag{3}\\
{ y _ { k + 1 } = x _ { 1 } y _ { k } + x _ { k } y _ { 1 } }
\end{array} \Longleftrightarrow \Longleftrightarrow \quad \left\{\begin{array}{l}
x_{k+1}=3 x_{k}+8 y_{k} \\
y_{k+1}=3 y_{k}+x_{k}
\end{array}\right.\right.
$$

From (3), by a simple calculation, we get

$$
\begin{equation*}
x_{k+2}=6 \cdot x_{k+1}-x_{k} \quad, \quad x_{1}=3, x_{2}=17 \tag{4}
\end{equation*}
$$

Since $n=3 a=\frac{3}{2}(x+1)$ the recurrence (4) yields

$$
\begin{gather*}
\frac{3}{2}\left(x_{k+2}+1\right)=6 \cdot \frac{3}{2}\left(x_{k+1}+1\right)-\frac{3}{2}\left(x_{k}+1\right)+6 \Longleftrightarrow \\
n_{k+2}=6 n_{k+1}-n_{k}+6 \quad, \quad n_{1}=6, n_{2}=27 \tag{5}
\end{gather*}
$$

By means of Mathematica we have listed the first 10 solutions given by (5):
$6,27,150,867,5046,29403,171366,998787,5821350,33929307$
The proof is finished.

