Problema J137. Let $A B C$ be a triangle and let tangents to the circumcircle at A, B, C intersect $B C, A C, A B$ at points A_{1}, B_{1}, C_{1}, respectively. Prove that

$$
\frac{1}{A A_{1}}+\frac{1}{B B_{1}}+\frac{1}{C C_{1}}=2 \max \left(\frac{1}{A A_{1}}, \frac{1}{B B_{1}}, \frac{1}{C C_{1}}\right)
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
Let us denote $a=B C, b=A C, c=A B, \alpha=\angle B A C, \beta=\angle A B C, \gamma=$ $\angle A C B$ and suppose without loss of generality that $a \geq b \geq c$ (so $\alpha \geq \beta \geq \gamma)$.

Since $\angle A_{1} A B=\gamma$ we have $\angle A_{1} A C=\alpha+\gamma$. Therefore the sinus theorem yields

$$
\begin{align*}
& \frac{A A_{1}}{\sin \gamma}=\frac{A C}{\sin \left(180^{\circ}-\alpha-2 \gamma\right)} \quad \Rightarrow \quad A A_{1}=\frac{b \sin \gamma}{\sin (\beta-\gamma)} \Rightarrow \\
& \frac{1}{A A_{1}}=\frac{\sin \beta \cos \gamma-\cos \beta \sin \gamma}{b \sin \gamma}=\frac{1}{2 R} \cot \gamma-\frac{\cos \beta}{b}=\frac{1}{2 R}(\cot \gamma-\cot \beta) \tag{1}
\end{align*}
$$

Similarly we obtain

$$
\begin{equation*}
\frac{1}{B B_{1}}=\frac{1}{2 R}(\cot \gamma-\cot \alpha) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1}{C C_{1}}=\frac{1}{2 R}(\cot \beta-\cot \alpha) \tag{3}
\end{equation*}
$$

Adding (1), (2), (3) we get

$$
\begin{equation*}
\frac{1}{A A_{1}}+\frac{1}{B B_{1}}+\frac{1}{C C_{1}}=\frac{1}{R}(\cot \gamma-\cot \alpha) \tag{4}
\end{equation*}
$$

In order to complete the proof we must show that

$$
\begin{equation*}
\max \left(\frac{1}{A A_{1}}, \frac{1}{B B_{1}}, \frac{1}{C C_{1}}\right)=\frac{1}{B B_{1}}=\frac{1}{2 R}(\cot \gamma-\cot \alpha) \tag{5}
\end{equation*}
$$

Now, if $\triangle A B C$ is an acute-angled triangle, $\cot \gamma \geq \cot \beta \geq \cot \alpha>0$ and this implies that

$$
\begin{array}{lll}
\cot \gamma-\cot \alpha \geq \cot \gamma-\cot \beta & \Longleftrightarrow & \frac{1}{B B_{1}} \geq \frac{1}{A A_{1}} \\
\cot \gamma-\cot \alpha \geq \cot \beta-\cot \alpha & \Longleftrightarrow & \frac{1}{B B_{1}} \geq \frac{1}{C C_{1}} \tag{7}
\end{array}
$$

whereas if $\triangle A B C$ is an obtuse-angled or a right triangle we have $\cot \gamma \geq \cot \beta$, $\cot \alpha \leq 0$ and the relations (6) and (7) are verified anyway. The proof is complete.

