Problema J138. Let a, b, ¢ be positive real numbers. Prove that
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Because of the symmetry we may assume that ¢ < b < ¢. Thus we have
a® < b < ¢? and
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so the rearrangement inequality yields
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Therefore, according to (1), it suffices to prove that
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Now, from AM-GM inequality, we have the following estimation
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Adding up (3) and similar cyclic results we get (2), so the desired inequality
is proved. O



