
Problema J138. Let a, b, c be positive real numbers. Prove that
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Because of the symmetry we may assume that a ≤ b ≤ c. Thus we have
a3 ≤ b3 ≤ c3 and
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so the rearrangement inequality yields
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Therefore, according to (1), it suffices to prove that

a3

a2 + b2
+

b3

b2 + c2
+

c3

c2 + a2
≥ a + b + c

2
(2)

Now, from AM-GM inequality, we have the following estimation
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Adding up (3) and similar cyclic results we get (2), so the desired inequality
is proved. �
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