Problema J138. Let a, b, c be positive real numbers. Prove that

$$
\frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}} \geq \frac{a+b+c}{2}
$$

Proposed by Mircea Becheanu, University of Bucarest, Romania
Solution by Ercole Suppa, Teramo, Italy
Because of the symmetry we may assume that $a \leq b \leq c$. Thus we have $a^{3} \leq b^{3} \leq c^{3}$ and

$$
\frac{1}{b^{2}+c^{2}} \leq \frac{1}{c^{2}+a^{2}} \leq \frac{1}{a^{2}+b^{2}}
$$

so the rearrangement inequality yields

$$
\begin{equation*}
\frac{a^{3}}{b^{2}+c^{2}}+\frac{b^{3}}{c^{2}+a^{2}}+\frac{c^{3}}{a^{2}+b^{2}} \geq \frac{a^{3}}{a^{2}+b^{2}}+\frac{b^{3}}{b^{2}+c^{2}}+\frac{c^{3}}{c^{2}+a^{2}} \tag{1}
\end{equation*}
$$

Therefore, according to (1), it suffices to prove that

$$
\begin{equation*}
\frac{a^{3}}{a^{2}+b^{2}}+\frac{b^{3}}{b^{2}+c^{2}}+\frac{c^{3}}{c^{2}+a^{2}} \geq \frac{a+b+c}{2} \tag{2}
\end{equation*}
$$

Now, from AM-GM inequality, we have the following estimation

$$
\begin{equation*}
\frac{a^{3}}{a^{2}+b^{2}}=\frac{a^{3}+a b^{2}-a b^{2}}{a^{2}+b^{2}}=a-\frac{a b^{2}}{a^{2}+b^{2}} \geq a-\frac{a b^{2}}{2 a b}=a-\frac{b}{2} \tag{3}
\end{equation*}
$$

Adding up (3) and similar cyclic results we get (2), so the desired inequality is proved.

