Problema J139. Let $a_{0}=a_{1}=1$ and

$$
a_{n+1}=\frac{a_{n}^{2}}{a_{n}+a_{n-1}}
$$

for $n \geq 1$. Find a_{n} in closed form.
Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Clearly, all the terms of the sequence are positive integers and for each $n \geq 1$ we have

$$
a_{n}^{2}=a_{n+1} a_{n}+a_{n+1} a_{n-1}
$$

which is equivalent to

$$
\frac{a_{n}}{a_{n+1}}=1+\frac{a_{n-1}}{a_{n}}
$$

Therefore, the sequence $b_{n}=\frac{a_{n}}{a_{n+1}}$ satisfies the recursive relation

$$
b_{n}=1+b_{n-1} \quad \text { for all } n \geq 1
$$

i.e. b_{n} is an arithmetic progression with $b_{0}=1$ and common difference $d=1$.

This implies that $b_{n}=n$, which is equivalent to

$$
a_{n+1}=\frac{1}{n} \cdot a_{n} \quad \text { for all } n \geq 1
$$

Now, a simple inductive argument shows that

$$
a_{n}=\frac{1}{n!}
$$

and the result is established.

