Problema J141. Let a, b, c be the side lengths of a triangle. Prove that

$$
0 \leq \frac{a-b}{b+c}+\frac{b-c}{c+a}+\frac{c-a}{a+b}<1
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA and Dorin Andrica, "Babes-Bolyai" University, Romania

Solution by Ercole Suppa, Teramo, Italy

The given inequality is equivalent to

$$
\begin{align*}
& 0 \leq \frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b}-3<1 \\
& 3 \leq \frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b}<4 \tag{1}
\end{align*}
$$

The left-hand side of (1) follows from AM-GM inequality, since

$$
\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b} \geq 3 \sqrt[3]{\frac{a+c}{b+c} \cdot \frac{b+a}{c+a} \cdot \frac{c+b}{a+b}}=3 \sqrt[3]{1}=3
$$

For the right-hand side of (1) note that the triangle inequality yields

$$
\begin{equation*}
b+c>a \quad \Rightarrow \quad b+c>\frac{a+b+c}{2} \tag{2}
\end{equation*}
$$

Adding (2) and similar cyclic results we get

$$
\frac{a+c}{b+c}+\frac{b+a}{c+a}+\frac{c+b}{a+b}<\frac{a+c}{\frac{a+b+c}{2}}+\frac{b+a}{\frac{a+b+c}{2}}+\frac{c+b}{\frac{a+b+c}{2}}=\frac{4(a+b+c)}{a+b+c}=4
$$

and the desired result is proved.

