
Problema J141. Let a, b, c be the side lengths of a triangle. Prove that
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The given inequality is equivalent to
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The left-hand side of (1) follows from AM-GM inequality, since
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For the right-hand side of (1) note that the triangle inequality yields

b + c > a ⇒ b + c >
a + b + c

2
(2)

Adding (2) and similar cyclic results we get
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and the desired result is proved. �
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