Problema J143. Let $x_{1}=-2, x_{2}=-1$ and

$$
x_{n+1}=\sqrt[3]{n\left(x_{n}^{2}+1\right)+2 x_{n-1}}
$$

for $n \geq 2$. Find x_{2009}.
Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

We first notice that $x_{3}=0, x_{4}=1, x_{5}=2$, and so forth. This leads to the conjecture that $x_{n}=n-3$. We prove this assumption by induction on n.

The claim is obvious for $n=1$. Suppose that the assumption is proved for $k=1,2, \ldots, n$. Then by using the recurrence we have

$$
\begin{aligned}
x_{n+1}^{3} & =n\left[(n-3)^{2}+1\right]+2(n-4)= \\
& =n\left(n^{2}-6 n+10\right)+2 n-8= \\
& =n^{3}-6 n^{2}+12 n-8=(n-2)^{3}
\end{aligned}
$$

Thus $x_{n}=n-2$, hence the claim is valid for $n+1$. Therefore $x_{2009}=2006$.

