Problema J143. Let $x_1 = -2, x_2 = -1$ and

$$x_{n+1} = \sqrt[3]{n} \left(x_n^2 + 1 \right) + 2x_{n-1}$$

_

for $n \ge 2$. Find x_{2009} .

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

We first notice that $x_3 = 0$, $x_4 = 1$, $x_5 = 2$, and so forth. This leads to the conjecture that $x_n = n - 3$. We prove this assumption by induction on n.

The claim is obvious for n = 1. Suppose that the assumption is proved for k = 1, 2, ..., n. Then by using the recurrence we have

$$x_{n+1}^3 = n \left[(n-3)^2 + 1 \right] + 2(n-4) =$$

= $n \left(n^2 - 6n + 10 \right) + 2n - 8 =$
= $n^3 - 6n^2 + 12n - 8 = (n-2)^3$

Thus $x_n = n - 2$, hence the claim is valid for n + 1. Therefore $x_{2009} = 2006$. \Box