
Problema J144. Let ABC be a triangle with a > b > c. Denote by O and
H its circumcenter and orthocenter, respectively. Prove that

sin∠AHO + sin∠BHO + sin∠CHO ≤ (a− c)(a + c)3

4abc ·OH
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Let R, A, B, C, a, b, c be the circumradius, the angles and the side lengths
of the triangle ABC, respectively.
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Clearly we have

∠HAO = ∠HAC − ∠OAC = (90◦ − C)− (90◦ −B) = B − C (1)

The sine law in triangle AHO yields

AO

sin∠AHO
=

OH

sin∠HAO
(2)

From (1) and (2), taking into account the law of sines and the law of cosines
in triangle ABC, it follows that
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Building up two similar equalities and adding up all of them, we get
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(a + b)(b + c)(a− c)(2a− 2b + 2c)

Then, according to the above relation, the given inequality can be rewritten
in the form

(a + b)(b + c)(2a− 2b + 2c) ≤ (a + c)3

which is true because of AM-GM inequality. �
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