Problema J144. Let $A B C$ be a triangle with $a>b>c$. Denote by O and H its circumcenter and orthocenter, respectively. Prove that

$$
\sin \angle A H O+\sin \angle B H O+\sin \angle C H O \leq \frac{(a-c)(a+c)^{3}}{4 a b c \cdot O H}
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA

Solution by Ercole Suppa, Teramo, Italy

Let R, A, B, C, a, b, c be the circumradius, the angles and the side lengths of the triangle $A B C$, respectively.

Clearly we have

$$
\begin{equation*}
\angle H A O=\angle H A C-\angle O A C=\left(90^{\circ}-C\right)-\left(90^{\circ}-B\right)=B-C \tag{1}
\end{equation*}
$$

The sine law in triangle $A H O$ yields

$$
\begin{equation*}
\frac{A O}{\sin \angle A H O}=\frac{O H}{\sin \angle H A O} \tag{2}
\end{equation*}
$$

From (1) and (2), taking into account the law of sines and the law of cosines in triangle $A B C$, it follows that

$$
\begin{aligned}
\sin \angle A H O & =\frac{R}{O H} \cdot \sin (B-C)= \\
& =\frac{R}{O H} \cdot(\sin B \cos C-\cos B \sin C)= \\
& =\frac{1}{O H} \cdot\left(\frac{b}{2} \cos C-\frac{c}{2} \cos B\right)= \\
& =\frac{1}{O H} \cdot\left(b \cdot \frac{a^{2}+b^{2}-c^{2}}{4 a b}-c \cdot \frac{a^{2}+c^{2}-b^{2}}{4 a c}\right)= \\
& =\frac{1}{O H} \cdot \frac{b^{2}-c^{2}}{2 a}
\end{aligned}
$$

Building up two similar equalities and adding up all of them, we get

$$
\begin{aligned}
& \sin \angle A H O+\sin \angle B H O+\sin \angle C H O= \\
= & \frac{1}{O H} \cdot\left(\frac{b^{2}-c^{2}}{2 a}+\frac{a^{2}-c^{2}}{2 b}+\frac{a^{2}-b^{2}}{2 c}\right)= \\
= & \frac{1}{2 a b c \cdot O H}\left[b c\left(b^{2}-c^{2}\right)+a c\left(a^{2}-c^{2}\right)+a b\left(a^{2}-b^{2}\right)\right]= \\
= & \frac{1}{2 a b c \cdot O H}(a+b)(b+c)(a-c)(a-b+c)= \\
= & \frac{1}{4 a b c \cdot O H}(a+b)(b+c)(a-c)(2 a-2 b+2 c)
\end{aligned}
$$

Then, according to the above relation, the given inequality can be rewritten in the form

$$
(a+b)(b+c)(2 a-2 b+2 c) \leq(a+c)^{3}
$$

which is true because of AM-GM inequality.

