Problema J146. Let $A_{1} A_{2} A_{3} A_{4} A_{5}$ be a convex pentagon and let $X \in$ $A_{1} A_{2}, Y \in A_{2} A_{3}, Z \in A_{3} A_{4}, U \in A_{4} A_{5}, V \in A_{5} A_{1}$ be points such that $A_{1} Z$, $A_{2} U, A_{3} V, A_{4} X, A_{5} Y$ intersect at P. Prove that

$$
\frac{A_{1} X}{A_{2} X} \cdot \frac{A_{2} Y}{A_{3} Y} \cdot \frac{A_{3} Z}{A_{4} Z} \cdot \frac{A_{4} U}{A_{5} U} \cdot \frac{A_{5} V}{A_{1} V}=1
$$

Proposed by Ivan Borsenco, Massachusetts Institute of Technology, USA
Solution by Ercole Suppa, Teramo, Italy
We will use the following
Lemma. If P is a point on the side $B C$ of a triangle $\triangle A B C$ we have

$$
\frac{P B}{P C}=\frac{A B}{A C} \cdot \frac{\sin \angle P A B}{\sin \angle P A C}
$$

Proof.

In triangles $\triangle P A B$ and $\triangle P A C$, the law of sines gives

$$
\frac{P B}{\sin \angle P A B}=\frac{A B}{\sin \angle A P B} \quad, \quad \frac{P C}{\sin \angle P A C}=\frac{A C}{\sin \left(180^{\circ}-\angle A P B\right)}=\frac{A C}{\sin \angle A P B}
$$

Dividing the above relations we get the desired result.

Coming back to the problem, let us denote $\angle A_{1} P X=\angle A_{4} P Z=\alpha, \angle X P A_{2}=$ $\angle U P A_{4}=\beta, \angle A_{2} P Y=\angle A_{5} P U=\gamma, \angle Y P A_{3}=\angle V P A_{5}=\delta, \angle A_{3} P Z=$ $\angle A_{1} P V=\epsilon$, as shown in figure.

Applying the above LEMMA to the triangles $\triangle A_{1} P A_{2}, \triangle A_{2} P A_{3}, \triangle A_{3} P A_{4}$, $\triangle A_{4} P A_{5}, \triangle A_{5} P A_{1}$ we get

$$
\begin{aligned}
& \frac{A_{1} X}{A_{2} X} \cdot \frac{A_{2} Y}{A_{3} Y} \cdot \frac{A_{3} Z}{A_{4} Z} \cdot \frac{A_{4} U}{A_{5} U} \cdot \frac{A_{5} V}{A_{1} V}= \\
= & \frac{\sin \alpha}{\sin \beta} \cdot \frac{\sin \gamma}{\sin \delta} \cdot \frac{\sin \alpha}{\sin \beta} \cdot \frac{\sin \epsilon}{\sin \alpha} \cdot \frac{\sin \beta}{\sin \gamma} \cdot \frac{\sin \delta}{\sin \epsilon}=1
\end{aligned}
$$

which ends the proof.

