Problema J147. Let $a_{0}=a_{1}=1$ and

$$
a_{n+1}=1+\frac{a_{1}^{2}}{a_{0}}+\cdots+\frac{a_{n}^{2}}{a_{n-1}}
$$

for $n \geq 1$. Find a_{n} in closed form.

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

We have

$$
a_{n+2}=1+\frac{a_{1}^{2}}{a_{0}}+\cdots+\frac{a_{n}^{2}}{a_{n-1}}+\frac{a_{n+1}^{2}}{a_{n}}=a_{n+1}+\frac{a_{n+1}^{2}}{a_{n}}
$$

Therefore, since $a_{n} \neq 0$ for each $n \geq 1$ (as can be proved by induction), we obtain

$$
\frac{a_{n+2}}{a_{n+1}}=1+\frac{a_{n+1}}{a_{n}}
$$

Thus, setting $b_{n}=\frac{a_{n+1}}{a_{n}}$, we get $b_{0}=1$ and

$$
b_{n+1}=1+b_{n}, \quad \forall n \geq 2
$$

from which, clearly, it follows that $b_{n}=n+1$ for each $n \geq 1$, i.e.

$$
a_{n+1}=(n+1) a_{n} \quad \Rightarrow \quad a_{n}=n!\quad, \quad \forall n \geq 1
$$

The proof is complete.

