Problema J151. Let $a \geq b \geq c>0$. Prove that

$$
(a-b+c)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right) \geq 1
$$

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Since $a \geq b \geq c>0$, we have

$$
\begin{aligned}
& (a-b+c)\left(\frac{1}{a}-\frac{1}{b}+\frac{1}{c}\right)-1= \\
= & \frac{(a-b+c)(b c-a c+a b)-a b c}{a b c}= \\
= & \frac{a b c-a^{2} c+a^{2} b-b^{2} c+a b c-a b^{2}+b c^{2}-a c^{2}+a b c-a b c}{a b c}= \\
= & \frac{a b(a-b)-a c(a-b)+b c(a-b)-c^{2}(a-b)}{a b c}= \\
= & \frac{(a-b)\left(a b-a c+b c-c^{2}\right)}{a b c}= \\
= & \frac{(a-b)(b-c)(a+c)}{a b c} \geq 0
\end{aligned}
$$

which ends the proof.

