Problema J153. Find all integers n such that $n^{2}+2010 n$ is a perfect square.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
We have to find all the solutions of diophantine equation

$$
n^{2}+2010 n=m^{2}, \quad n \in \mathbb{Z}, m \in \mathbb{N}
$$

which rewrites in the following equivalent form

$$
\begin{gather*}
n^{2}+2010 n+1005^{2}=m^{2}+1005^{2} \\
(n+1005)^{2}-m^{2}=1005^{2} \Leftrightarrow \\
(n+m+1005)(n-m+1005)=1005^{2} \tag{1}
\end{gather*}
$$

We can obtain the solutions of (1) by solving the following systems

$$
\left\{\begin{array}{l}
n+m=d-1005 \\
n-m=\frac{1005^{2}}{d}-1005
\end{array}\right.
$$

where d is a divisor of $2005^{2}=3^{2} \cdot 5^{2} \cdot 67^{2}$. Hence we get

$$
\begin{equation*}
n=\frac{d+\frac{1005^{2}}{d}}{2}-1005=\frac{d^{2}-2010 d+1005^{2}}{2 d} \tag{2}
\end{equation*}
$$

The divisors of 2005^{2} are

$$
\begin{aligned}
& \pm 1, \pm 3, \pm 5, \pm 9, \pm 15, \pm 25, \pm 45, \pm 67, \pm 75, \pm 201, \pm 225, \pm 335, \pm 603, \pm 1005 \\
& \pm 1675, \pm 3015, \pm 4489, \pm 5025, \pm 13467, \pm 15075, \pm 22445, \pm 40401, \pm 67335 \\
& \pm 112225, \pm 202005, \pm 336675, \pm 1010025
\end{aligned}
$$

and plugging them into (2) we obtain the integers n that we are looking for:
$-506018,-169344,-102010,-57122,-34680,-21218,-12250,-8576$,
$-7776,-3618,-3362,-2680,-2144,-2010,0,134,670,1352,1608$,
$5766,6566,10240,19208,32670,55112,100000,167334,504008$

