Problema J154. Let ABC be an acute triangle and let MNPQ be a rectangle inscribed in the triangle such that $M, N \in BC, P \in AC, Q \in AB$. Prove that

 $[MNPQ] \le \frac{1}{2}[ABC]$

Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania Solution by Ercole Suppa, Teramo, Italy

We will use the following

LEMMA. Let ABC be a triangle with $\angle A = 90^{\circ}$. If AHPK is a rectangle inscribed in $\triangle ABC$ such that $H \in AB$, $K \in AC$ then we have

$$[AHPK] \le \frac{1}{2}[ABC]$$

Proof. Denote AB = c, AC = b, AH = x and PK = y.

From similar triangles CKP and CAB we have

$$KP:CK=AB:CA \Rightarrow x:b=(a-y):a \Rightarrow ax+by=ab$$

Hence

$$[AHPK] = xy = \frac{1}{ab}(ax)(by) \le \frac{1}{ab}\left(\frac{ax+by}{2}\right)^2 = \frac{ab}{4} = \frac{1}{2}[ABC]$$

and the LEMMA is proved.

Coming back to the problem, draw from A the perpendicular to BC which intersects $QP,\,BC$ in $K,\,H$ respectively.

By applying the Lemma to the triangles ABH and AHC we get

$$[MNPQ] = [QMHK] + [HNPK] \le \frac{1}{2}[ABH] + \frac{1}{2}[AHC] = \frac{1}{2}[ABC]$$

and the desired result is proved.