Problema J154. Let $A B C$ be an acute triangle and let $M N P Q$ be a rectangle inscribed in the triangle such that $M, N \in B C, P \in A C, Q \in A B$. Prove that

$$
[M N P Q] \leq \frac{1}{2}[A B C]
$$

Proposed by Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania
Solution by Ercole Suppa, Teramo, Italy
We will use the following

Lemma. Let $A B C$ be a triangle with $\angle A=90^{\circ}$. If $A H P K$ is a rectangle inscribed in $\triangle A B C$ such that $H \in A B, K \in A C$ then we have

$$
[A H P K] \leq \frac{1}{2}[A B C]
$$

Proof. Denote $A B=c, A C=b, A H=x$ and $P K=y$.

From similar triangles $C K P$ and $C A B$ we have

$$
K P: C K=A B: C A \quad \Rightarrow \quad x: b=(a-y): a \quad \Rightarrow \quad a x+b y=a b
$$

Hence

$$
[A H P K]=x y=\frac{1}{a b}(a x)(b y) \leq \frac{1}{a b}\left(\frac{a x+b y}{2}\right)^{2}=\frac{a b}{4}=\frac{1}{2}[A B C]
$$

and the Lemma is proved.
Coming back to the problem, draw from A the perpendicular to $B C$ which intersects $Q P, B C$ in K, H respectively.

By applying the Lemma to the triangles $A B H$ and $A H C$ we get

$$
[M N P Q]=[Q M H K]+[H N P K] \leq \frac{1}{2}[A B H]+\frac{1}{2}[A H C]=\frac{1}{2}[A B C]
$$

and the desired result is proved.

