Problema J155. Find all n for which there are n consecutive integers whose sum of squares is a prime.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Consider the sum of squares of n consecutive integers $k, k+1, \ldots, k+n-1$ and let

$$
f(n, k)=\sum_{i=0}^{n-1}(k+i)^{2}=\frac{1}{6} n\left(1-6 k+6 k^{2}-3 n+6 k n+2 n^{2}\right)
$$

We want prove that the only integers n verifying the requested condition are $2,3,6$. In fact

- for $n=2$ we have $1^{2}+2^{2}=5$;
- for $n=3$ we have $1^{2}+2^{2}+3^{2}=13$;
- for $n=6$ we have $1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}=139$;

On the other hand

- for $n=1$ we have $f(1, k)=k^{2}$ which is never a prime number for any value of k;
- for $n=4$ we have $f(4, k)=2\left(2 k^{2}+10 k+15\right)$ which is never a prime number since the equation $2 k^{2}+10 k+15=1$ has no real solutions (because $\Delta=-12<0)$;
- for $n=5$ we have $f(5, k)=5\left(k^{2}+6 k+11\right)$ which is never a prime number since the equation $k^{2}+6 k+11=1$ has no real solutions (because $\Delta=-4<0)$;
- for $n=6 t+1$ with $t \geq 1$, we have

$$
f(6 t+1, k)=(1+6 t)\left(k^{2}+6 t k+12 t^{2}+t\right)
$$

which is never a prime number since the equation $k^{2}+6 t k+12 t^{2}+t=1$ has no real solutions (because $\Delta=4-4 t-12 t^{2}<0$);

- for $n=6 t+2$ with $t \geq 1$, we have

$$
f(6 t+2, k)=(1+3 t)\left(2 k^{2}+12 t k+2 k+24 t^{2}+10 t+1\right)
$$

which is never a prime number since the equation $2 k^{2}+(2+12 t) k+24 t^{2}+$ $10 t+1=1$ has no real solutions (because $\Delta=4-32 t-48 t^{2}<0$);

- for $n=6 t+3$ with $t \geq 1$, we have

$$
f(6 t+3, k)=(1+2 t)\left(3 k^{2}+18 k t+6 k+36 t^{2}+27 t+5\right)
$$

which is never a prime number since the equation $3 k^{2}+(6+18 t) k+36 t^{2}+$ $27 t+5=1$ has no real solutions (because $\Delta=-12-108 t-108 t^{2}<0$);

- for $n=6 t+4$ with $t \geq 1$, we have

$$
f(6 t+4, k)=(2+3 t)\left(2 k^{2}+12 k t+6 k+24 t^{2}+26 t+7\right)
$$

which is never a prime number since the equation $2 k^{2}+(6+12 t) k+24 t^{2}+$ $26 t+7=1$ has no real solutions (because $\Delta=-12-64 t-48 t^{2}<0$);

- for $n=6 t+5$ with $t \geq 1$, we have

$$
f(6 t+5, k)=(5+6 t)\left(k^{2}+6 k t+4 k+12 t^{2}+17 t+6\right)
$$

which is never a prime number since the equation $k^{2}+(4+6 t) k+12 t^{2}+$ $17 t+6=1$ has no real solutions (because $\Delta=-4-20 t-12 t^{2}<0$);

- for $n=6 t$ with $t>1$, we have

$$
f(6 t, k)=t\left(6 k^{2}+36 k t-6 k+72 t^{2}-18 t+1\right)
$$

which is never a prime number since the equation $6 k^{2}+(36 t-6) k+1-$ $18 t+72 t^{2}=1$ has no real solutions (because $\Delta=36-432 t^{2}<0$).

The proof is complete.

