Problema J156. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function such that $f(x)+f(x+y)$ is a rational number for all real numbers x and all $y>0$. Prove that $f(x)$ is a rational number for all real numbers x.

Proposed by Bogdan Enescu, "B.P.Hasdeu" National College, Buzau, Romania

Solution by Ercole Suppa, Teramo, Italy

For each real number x, consider a real number $y>0$ and define u, v, w in the following way

$$
u=f(x)+f(x+y), \quad v=f(x-y)+f(x), \quad w=f(x-y)+f(x+y)
$$

Since $x=(x-y)+y$ and $x+y=(x-y)+2 y$, the numbers u, v, w are rational by hypothesis. Therefore

$$
f(x)=\frac{1}{2}(u+v-w)
$$

is a rational number and we are done.

