
Problema J166. Let P be a point inside triangle ABC and let da, db, dc
be the distances from point P to the sides of the triangle. Prove that

K

dadbdc
≥ s

Rr

where K is the area of the pedal triangle of P and s, R, r are the semiperimeter,
circumradius and inradius of triangle ABC.
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By using the AM-GM inequality and the well known relation abc = 4RK,
we get

8K3 = (2K)3 = (ada + bdb + cdc)
3 ≥ 27abc · dadbdc = 27 · 4RK · dadbdc

from which it follows that
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2

27
· K

2

R
(1)

Since the function f(x) = sinx is concave on [0, π], the Jensen’s inequality yields

sinA+ sinB + sinC

3
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(
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3

)
= sin 60◦ =

√
3

2

Thus, taking into account the extended sine law, we have
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√
3

2
⇒ a
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≤ 3
√
3

2
⇒

2s ≤ 3
√
3R ⇒ 4s2 ≤ 27R2 (2)

From (1) and (2), by using the formula K = rs, we deduce that
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2
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· r

2s2

R
≤ 27R2r2

54R
=
Rr2

2
⇒

K
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Rr · Ks
=

2s

Rr
>

s
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which ends the proof. �
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