Problema J166. Let $P$ be a point inside triangle $A B C$ and let $d_{a}, d_{b}, d_{c}$ be the distances from point $P$ to the sides of the triangle. Prove that

$$
\frac{K}{d_{a} d_{b} d_{c}} \geq \frac{s}{R r}
$$

where $K$ is the area of the pedal triangle of $P$ and $s, R, r$ are the semiperimeter, circumradius and inradius of triangle $A B C$.

Proposed by Andrei Razvan Baleanu, "George Cosbuc", Motru, Romania

## Solution by Ercole Suppa, Teramo, Italy

By using the AM-GM inequality and the well known relation $a b c=4 R K$, we get

$$
8 K^{3}=(2 K)^{3}=\left(a d_{a}+b d_{b}+c d_{c}\right)^{3} \geq 27 a b c \cdot d_{a} d_{b} d_{c}=27 \cdot 4 R K \cdot d_{a} d_{b} d_{c}
$$

from which it follows that

$$
\begin{equation*}
d_{a} d_{b} d_{c} \leq \frac{2}{27} \cdot \frac{K^{2}}{R} \tag{1}
\end{equation*}
$$

Since the function $f(x)=\sin x$ is concave on $[0, \pi]$, the Jensen's inequality yields

$$
\frac{\sin A+\sin B+\sin C}{3} \leq \sin \left(\frac{A+B+C}{3}\right)=\sin 60^{\circ}=\frac{\sqrt{3}}{2}
$$

Thus, taking into account the extended sine law, we have

$$
\begin{align*}
\sin A+\sin B+\sin C & \leq \frac{3 \sqrt{3}}{2} \quad \Rightarrow \quad \frac{a}{2 R}+\frac{b}{2 R}+\frac{c}{2 R} \leq \frac{3 \sqrt{3}}{2} \Rightarrow \\
2 s & \leq 3 \sqrt{3} R \tag{2}
\end{align*} \quad \Rightarrow \quad 4 s^{2} \leq 27 R^{2} .
$$

From (1) and (2), by using the formula $K=r s$, we deduce that

$$
\begin{gathered}
d_{a} d_{b} d_{c} \leq \frac{2}{27} \cdot \frac{r^{2} s^{2}}{R} \leq \frac{27 R^{2} r^{2}}{54 R}=\frac{R r^{2}}{2} \Rightarrow \\
\frac{K}{d_{a} d_{b} d_{c}} \geq \frac{2 K}{R r^{2}}=\frac{2 K}{R r \cdot \frac{K}{s}}=\frac{2 s}{R r}>\frac{s}{R r}
\end{gathered}
$$

which ends the proof.

