Problema J168. Let n be a positive integer. Find the least positive integer a such that the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n}=a \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=a
\end{array}\right.
$$

has no integer solutions.
Proposed by Dorin Andrica, "Babeş-Bolyai University", Cluj-Napoca, Romania
Solution by Ercole Suppa, Teramo, Italy
If $a=n+1$ the system

$$
\left\{\begin{array}{l}
x_{1}+x_{2}+\cdots+x_{n}=n+1 \\
x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=n+1
\end{array}\right.
$$

may not have integer solutions $\left(x_{1}, \ldots, x_{n}\right)$, otherwise there would be

$$
\begin{aligned}
\left(x_{1}-1\right)^{2}+\cdots+\left(x_{n}-1\right)^{2} & =\sum x_{i}^{2}-2 \sum x_{i}+n= \\
& =n+1-2(n+1)+n=-1
\end{aligned}
$$

which is impossible.
If $a \leq n$ the system admit the obviuos solution $x_{1}=x_{2}=\cdots=x_{a}=1$, $x_{a+1}=\cdots=x_{n}=0$.

Therefore the least positive integer a such that the system has not integer solutions is $a=n+1$.

