Problema J169. If $x, y, z>0$ and $x+y+z=1$, find the maximum of

$$
E(x, y, z)=\frac{x y}{x+y}+\frac{y z}{y+z}+\frac{z x}{z+x}
$$

Proposed by Dorin Andrica, Babes-Bolyai University, Romania
Solution by Ercole Suppa, Teramo, Italy
According to AM-GM inequality we have

$$
\begin{aligned}
E(x, y, z) & \leq \frac{\frac{(x+y)^{2}}{4}}{x+y}+\frac{\frac{(y+z)^{2}}{4}}{y+z}+\frac{\frac{(z+x)^{2}}{4}}{z+x}= \\
& =\frac{x+y}{4}+\frac{y+z}{4}+\frac{z+x}{4}= \\
& =\frac{x+y+z}{2}=\frac{1}{2}
\end{aligned}
$$

Therefore the maximum of $E(x, y, z)$ is $\frac{1}{2}$, occurring for example if

$$
x=y=z=\frac{1}{3}
$$

