Problema J170. In the interior of a regular pentagon $A B C D E$ consider the point M such that triangle $M D E$ is equilateral. Find the angles of triangle $A M B$.

Proposed by Catalin Barbu, Vasile Alecsandri College, Bacau, Romania

Solution by Ercole Suppa, Teramo, Italy

Notice that the points M, D, A lie on the circle γ with center E and radius $E D$. Furthermore M lie on the perpendicular bisector of $D E$ so, clearly, $\angle M B A=\frac{1}{2} \angle A B C=54^{\circ}$.

Since $M D E$ is equilateral we have $\angle D E M=60^{\circ}$. Therefore

$$
\begin{aligned}
& \angle E A M=\angle E A D+\angle D A M=\frac{1}{2} \angle E M D+\frac{1}{2} \angle D E M=36^{\circ}+30^{\circ}=66^{\circ} \\
& \angle M A B=\angle E A B-\angle E A M=108^{\circ}-66^{\circ}=42^{\circ} \\
& \angle A M B=180^{\circ}-\angle M A B-\angle M B A=180^{\circ}-42^{\circ}-54^{\circ}=84^{\circ}
\end{aligned}
$$

