Problema J171. If different letters represent different digits, could the addition

$$
\begin{array}{r}
A X X X U \\
B X X V \\
C X X Y \\
+D E X X Z \\
------ \\
X X X X X
\end{array}
$$

be correct?
Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Considering the sum $(\bmod 9)$ we get

$$
\begin{aligned}
& 8 X+(A+B+C+D+E+U+V+X+Y+Z) \equiv 5 X \quad(\bmod 9) \quad \Rightarrow \\
& 3 X+45 \equiv 0 \quad(\bmod 9) \quad \Rightarrow \quad 3 X \equiv 0 \quad(\bmod 9)
\end{aligned}
$$

Therefore $X \in\{3,6,9\}$. We will prove that the only possible case is $X=6$. To describe the our reasoning, we label the columns starting from the right.

Consider the three following cases

- If $X=3$ we should have
$A 333 U$
$B 33 V$
$C 33 Y$
$+D E 33 Z$

33333

Notice that we must have a carryover of 1 from the first column. Adding the terms of the fourth column we get $B+C+D+4=13$ or $B+C+D+4=$ 23 (since B, C, D are different and $B, C, D \leq 9$).

- If $B+C+E+4=13$ then $A+D+1=3$ which is impossible;
- If $B+C+E+4=23$ then $A+D+2=3$ which is impossible.
- If $X=9$ we should have

> | $A 999 U$ |
| ---: |
| $B 99 V$ |
| $C 99 Y$ |
| $+D E 99 Z$ |
| ----- |
| 99999 |

Notice that we must have a carryover of 3 from the first column, i.e. $U+V+Y+Z=39$, which is clearly impossible.

Thus the only possibility is $X=6$ which gives the solution
16662
5667
3668
$+40669$

66666

Obviously we obtain other solutions by permuting the digits U, V, Y, Z in the first column, the digits B, C, E in the fourth column and the digits A, D in the fifth column.

