Problema J172. Let P be a point situated in the interior of an equilateral triangle $A B C$ and let $A^{\prime}, B^{\prime}, C^{\prime}$ be the intersections of lines $A P, B P, C P$ with sides $B C, C A, A B$, respectively. Find P such that

$$
A^{\prime} B^{2}+B^{\prime} C^{2}+C^{\prime} A^{2}=A B^{2}+B C^{\prime 2}+C A^{\prime 2}
$$

Proposed by Catalin Barbu, Vasile Alecsandri College, Bacau, Romania
Solution by Ercole Suppa, Teramo, Italy
Let us denote by a the side length of equilateral triangle $A B C$ and let $B A^{\prime}=$ $x, C B^{\prime}=y, A C^{\prime}=z$. Then $A^{\prime} C=a-x, B^{\prime} A=a-y, C^{\prime} B=a-z$ and given condition yields

$$
\begin{equation*}
x^{2}+y^{2}+z^{2}=(a-x)^{2}+(a-y)^{2}+(a-z)^{2} \quad \Leftrightarrow \quad 2(x+y+z)=3 a \tag{1}
\end{equation*}
$$

Since the $A A^{\prime}, B B^{\prime}, C C^{\prime}$ are concurrent, the Ceva's theorem gives

$$
\begin{align*}
& \frac{x}{a-x} \cdot \frac{y}{a-y} \cdot \frac{z}{a-z}=1 \quad \Rightarrow \\
& x y z=(a-x)(a-y)(a-z) \tag{2}
\end{align*}
$$

From (1) and (2) we obtain

$$
\begin{array}{ll}
a^{3}-(x+y+z) a^{2}+(x y+y z+z x) a-2 x y z=0 & \Rightarrow \\
4 a^{3}-4(x+y+z) a^{2}+4(x y+y z+z x) a-8 x y z=0 & \Rightarrow \\
4 a^{3}-3 a^{3}-2(x+y+z) a^{2}+4(x y+y z+z x) a-8 x y z=0 & \Rightarrow \\
a^{3}-2(x+y+z) a^{2}+4(x y+y z+z x) a-8 x y z=0 & \Rightarrow \\
(a-2 x)(a-2 y)(a-2 z)=0 & \Rightarrow \\
x=\frac{a}{2} \quad \vee \quad y=\frac{a}{2} \quad \vee \quad z=\frac{a}{2} &
\end{array}
$$

This shows that P lies on one of medians of $\triangle A B C$. On the other hand, if P belongs to one of the medians, say on the A-median, then $z=\frac{a}{2}$ and by Ceva's theorem $x y=(a-x)(a-y)$, or $x+y=a$. Thus $x+y+z=\frac{3 a}{2}$, so that the required condition holds.

Therefore the locus of the point P is the union of the interior points of the three medians of $\triangle A B C$.

