Problema J174. The incircle of triangle $A B C$ touches sides $B C, C A, A B$ at D, E, F, respectively. Let K be a point on side $B C$ and let M be the point on the line segment $A K$ such that $A M=A E=A F$. Denote by L and N the incenters of triangles $A B K$ and $A C K$, respectively. Prove that K is the foot of the altitude from A if and only if $D L M N$ is a square.

Proposed by Bogdan Enescu, B.P.Hasdeu College, Buzau, Romania
Solution by Ercole Suppa, Teramo, Italy
We begin by proving two lemmas.
Lemma 1. The points D, K lie on the circle with diameter $L N$.
Proof. Suppose wlog that $c<b$. Let I, U, V be the incenter of $A B C$ and the points where the circles $(L),(N)$ touch the side $B C$; let r, r_{1}, r_{2} be the inradii of the circles $(I),(L),(N)$, as shown in figure.

Denote $a=B C, b=C A, c=A B, m=B K, n=K C, x=A K$.
Since L and N are the incenters of $\triangle A B K$ and $\triangle A C K$ we have

$$
\angle L K N=\angle L K A+\angle A K N=\frac{1}{2}(\angle B K A+\angle A K C)=90^{\circ}
$$

In order to prove that $\angle L D N=90^{\circ}$ we will show that

$$
\begin{equation*}
L D^{2}+D N^{2}=L N^{2} \tag{1}
\end{equation*}
$$

The Pythagora's theorem yields $L D^{2}=r_{1}^{2}+U D^{2}, N D^{2}=r_{2}^{2}+D V^{2}$ and
$L N^{2}=U V^{2}+\left(r_{1}-r_{2}\right)^{2}=U D^{2}+D V^{2}-2 U D \cdot D V+r_{1}^{2}+r_{2}^{2}-2 r_{1} r_{2}$
Therefore to establish (3) it is enough to show that $U D \cdot D V=r_{1} r_{2}$.
We clearly have

$$
\begin{equation*}
U D=B D-B U=\frac{a+c-b}{2}-\frac{m+c-x}{2}=\frac{a+x-b-m}{2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
D V=D C-C V=\frac{a+b-c}{2}-\frac{m+b-x}{2}=\frac{a+x-c-n}{2} \tag{3}
\end{equation*}
$$

From (2) and (3), plugging $n=a-m$ into the expression, we obtain

$$
\begin{equation*}
U D \cdot D V=\frac{(x+a-b-m)(x-c+m)}{4} \tag{4}
\end{equation*}
$$

From the similar triangles $\triangle B U L \sim \triangle B D I, \triangle C V N \sim \triangle C D I$, it follows that

$$
\begin{array}{lll}
L U: I D=B U: B D & \Rightarrow & r_{1}=r \cdot \frac{c+m-x}{a+c-b} \\
N V: I D=C V: C D & \Rightarrow & r_{2}=r \cdot \frac{b+n-x}{a+b-c} \tag{6}
\end{array}
$$

From (5),(6) using the well known formula

$$
r^{2}=\frac{(b+c-a)(a+c-b)(a+b-c)}{4(a+b+c)}
$$

and plugging $n=a-m$ into the expression, we obtain

$$
\begin{equation*}
r_{1} r_{2}=\frac{(b+c-a)(a+b-m-x)(c+m-x)}{4(a+b+c)} \tag{7}
\end{equation*}
$$

Using (4) and (7) we have

$$
\begin{equation*}
U D \cdot D V-r_{1} r_{2}=\frac{a x^{2}-a c^{2}+a^{2} m-b^{2} m+c^{2} m-a m^{2}}{2(a+b+c)} \tag{8}
\end{equation*}
$$

From the Stewart's theorem we get

$$
x^{2}=\frac{m b^{2}+(a-m) c^{2}-a m(a-m)}{a}
$$

Finally, plugging x^{2} into (8), after a boring calculation, we have

$$
U D \cdot D V-r_{1} r_{2}=\frac{\left(c^{2}-a m\right)(m+n-a)}{2(a+b+c)}=0
$$

Thus $L D^{2}+D N^{2}=L N^{2}$ and the lemma is proved.
Lemma 2. If M is the second intersection point of $A K$ with the circle γ circumscribed to $D K N L$, then $D M \perp L N$ and $A M=A E=A F$.

Proof. Let the incircle of triangle $A B K$ touches side $A B$ at F^{\prime}. According to Lemma 1 the center of γ is the midpoint of $L N$, so the point M lies on the external tangent to the circles $(L),(N)$. Therefore, because of simmetry of the figure, we have $D M \perp L N$ and

$$
\begin{aligned}
A M & =A F^{\prime}-U D=A F^{\prime}-(B D-B U) \\
& =\frac{c+x-m}{2}-\frac{a+c-b}{2}+\frac{c+m-x}{2} \\
& =\frac{b+c-a}{2}=A F
\end{aligned}
$$

The lemma is proved.
Considering now the original problem, from Lemma 1 and Lemma 2 it follows that

- $D L M N$ is cyclic;
- $\angle L D N=\angle L M N=90^{\circ}$;
- $D M \perp L N$.

Therefore $D L M N$ is a square if and only if $M D$ is a diameter of the circumcircle of $D L M N$, i.e. $\angle M K D=90^{\circ}$ (i.e. $A K \perp B C$).

