Problema J174. The incircle of triangle ABC touches sides BC, CA, AB at D, E, F, respectively. Let K be a point on side BC and let M be the point on the line segment AK such that AM = AE = AF. Denote by L and N the incenters of triangles ABK and ACK, respectively. Prove that K is the foot of the altitude from A if and only if DLMN is a square.

Proposed by Bogdan Enescu, B.P.Hasdeu College, Buzau, Romania Solution by Ercole Suppa, Teramo, Italy

We begin by proving two lemmas.

LEMMA 1. The points D, K lie on the circle with diameter LN.

Proof. Suppose wlog that c < b. Let I, U, V be the incenter of ABC and the points where the circles (L), (N) touch the side BC; let r, r_1, r_2 be the inradii of the circles (I), (L), (N), as shown in figure.

Denote a = BC, b = CA, c = AB, m = BK, n = KC, x = AK. Since L and N are the incenters of $\triangle ABK$ and $\triangle ACK$ we have

$$\angle LKN = \angle LKA + \angle AKN = \frac{1}{2} \left(\angle BKA + \angle AKC \right) = 90^{\circ}$$

In order to prove that $\angle LDN = 90^{\circ}$ we will show that

$$LD^2 + DN^2 = LN^2 \tag{1}$$

The Pythagora's theorem yields $LD^2=r_1^2+UD^2,\,ND^2=r_2^2+DV^2$ and

$$LN^{2} = UV^{2} + (r_{1} - r_{2})^{2} = UD^{2} + DV^{2} - 2UD \cdot DV + r_{1}^{2} + r_{2}^{2} - 2r_{1}r_{2}$$

Therefore to establish (3) it is enough to show that $UD \cdot DV = r_1 r_2$.

We clearly have

$$UD = BD - BU = \frac{a+c-b}{2} - \frac{m+c-x}{2} = \frac{a+x-b-m}{2}$$
 (2)

$$DV = DC - CV = \frac{a+b-c}{2} - \frac{m+b-x}{2} = \frac{a+x-c-n}{2}$$
 (3)

From (2) and (3), plugging n = a - m into the expression, we obtain

$$UD \cdot DV = \frac{(x+a-b-m)(x-c+m)}{4} \tag{4}$$

From the similar triangles $\triangle BUL \sim \triangle BDI$, $\triangle CVN \sim \triangle CDI$, it follows that

$$LU: ID = BU: BD \Rightarrow r_1 = r \cdot \frac{c + m - x}{a + c - b}$$
 (5)

$$NV: ID = CV: CD \quad \Rightarrow \quad r_2 = r \cdot \frac{b+n-x}{a+b-c}$$
 (6)

From (5),(6) using the well known formula

$$r^2 = \frac{(b+c-a)(a+c-b)(a+b-c)}{4(a+b+c)}$$

and plugging n = a - m into the expression, we obtain

$$r_1 r_2 = \frac{(b+c-a)(a+b-m-x)(c+m-x)}{4(a+b+c)}$$
 (7)

Using (4) and (7) we have

$$UD \cdot DV - r_1 r_2 = \frac{ax^2 - ac^2 + a^2m - b^2m + c^2m - am^2}{2(a+b+c)}$$
 (8)

From the Stewart's theorem we get

$$x^{2} = \frac{mb^{2} + (a-m)c^{2} - am(a-m)}{a}$$

Finally, plugging x^2 into (8), after a boring calculation, we have

$$UD \cdot DV - r_1 r_2 = \frac{(c^2 - am)(m + n - a)}{2(a + b + c)} = 0$$

Thus $LD^2 + DN^2 = LN^2$ and the lemma is proved.

LEMMA 2. If M is the second intersection point of AK with the circle γ circumscribed to DKNL, then $DM \perp LN$ and AM = AE = AF.

Proof. Let the incircle of triangle ABK touches side AB at F'. According to LEMMA 1 the center of γ is the midpoint of LN, so the point M lies on the external tangent to the circles (L), (N). Therefore, because of simmetry of the figure, we have $DM \perp LN$ and

$$AM = AF' - UD = AF' - (BD - BU)$$

$$= \frac{c + x - m}{2} - \frac{a + c - b}{2} + \frac{c + m - x}{2}$$

$$= \frac{b + c - a}{2} = AF$$

The lemma is proved.

Considering now the original problem, from Lemma 1 and Lemma 2 it follows that

- *DLMN* is cyclic;
- $\angle LDN = \angle LMN = 90^{\circ}$;
- $DM \perp LN$.

Therefore DLMN is a square if and only if MD is a diameter of the circumcircle of DLMN, i.e. $\angle MKD = 90^{\circ}$ (i.e. $AK \perp BC$).