Problema J217. If a, b, c are integers such that $a^{2}+2 b c=1$ and $b^{2}+2 c a=$ 2012, find all possible values of $c^{2}+2 a b$.

Proposed by Titu Andreescu, University of Texas at Dallas, USA
Solution by Ercole Suppa, Teramo, Italy
Subtracting the two given equalities from each other, we get

$$
b^{2}-a^{2}+2 a c-2 b c=2011 \quad \Leftrightarrow \quad(a-b)(2 c-a-b)=2011
$$

Since 2011 is prime we have the following cases:

- $a-b=1,2 c-a-b=2011, a^{2}+2 b c=1$ yielding

$$
(a, b, c) \in\left\{(1,0,1006),\left(-\frac{2001}{3},-\frac{2014}{3}, \frac{1004}{3}\right)\right\}
$$

- $a-b=-1,2 c-a-b=-2011, a^{2}+2 b c=1$ yielding

$$
(a, b, c) \in\left\{(-1,0,1006),\left(\frac{2001}{3}, \frac{2014}{3},-\frac{1004}{3}\right)\right\}
$$

- $a-b=2011,2 c-a-b=1, a^{2}+2 b c=1$ which has no solutions in \mathbb{R}.
- $a-b=-2011,2 c-a-b=-1, a^{2}+2 b c=1$ which has no solutions in \mathbb{R}.

Since a, b, c are integers, the only acceptable values for a, b, c are

$$
(a, b, c) \in\{(1,0,1006),(-1,0,1006)\}
$$

so $c^{2}+2 a b=1006^{2}=1012036$.

