**Problema J217.** If a, b, c are integers such that  $a^2 + 2bc = 1$  and  $b^2 + 2ca = 2012$ , find all possible values of  $c^2 + 2ab$ .

Proposed by Titu Andreescu, University of Texas at Dallas, USA

Solution by Ercole Suppa, Teramo, Italy

Subtracting the two given equalities from each other, we get

$$b^2 - a^2 + 2ac - 2bc = 2011 \Leftrightarrow (a - b)(2c - a - b) = 2011$$

Since 2011 is prime we have the following cases:

• a - b = 1, 2c - a - b = 2011,  $a^2 + 2bc = 1$  yielding

$$(a,b,c) \in \left\{(1,0,1006), \left(-\frac{2001}{3}, -\frac{2014}{3}, \frac{1004}{3}\right)\right\}$$

• a-b=-1, 2c-a-b=-2011,  $a^2+2bc=1$  yielding

$$(a,b,c) \in \left\{ (-1,0,1006), \left(\frac{2001}{3},\frac{2014}{3},-\frac{1004}{3}\right) \right\}$$

- $a-b=2011, 2c-a-b=1, a^2+2bc=1$  which has no solutions in  $\mathbb{R}$ .
- $a-b=-2011,\,2c-a-b=-1,\,a^2+2bc=1$  which has no solutions in  $\mathbb{R}$ .

Since a, b, c are integers, the only acceptable values for a, b, c are

$$(a, b, c) \in \{(1, 0, 1006), (-1, 0, 1006)\}\$$

so 
$$c^2 + 2ab = 1006^2 = 1012036$$
.